Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
End-to-End Error-Correcting Codes on Networks With Worst-Case Bit Errors
KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
Chinese Univ Hong Kong, Dept Informat Engn, SE-10044 Stockholm, Sweden..
2018 (Engelska)Ingår i: IEEE Transactions on Information Theory, ISSN 0018-9448, E-ISSN 1557-9654, Vol. 64, nr 6, s. 4467-4479Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In highly dynamic wireless networks, communications face several challenges. In the first place, noise levels between nodes might be difficult to predict a priori. Besides, a Byzantine attacker hidden in the network, with knowledge of the network topology and observation of all transmissions, can choose arbitrary locations to inject corrupted packets. Considering that transmissions are usually in bits and hardware in wireless networks usually use modulation schemes with the size of modulation alphabet being powers of two, e.g. BPSK, QPSK, 16-QAM, 64-QAM, and so on, to address the above problem, we study coding for networks experiencing worst case bit errors, and with network codes over binary extension fields. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. A new transform metric for errors under the considered model is proposed. Using this metric, we replicate many of the classical results from coding theory. Specifically, new Hamming-type, Plotkin-type, and Elias-Bassalygo-type upper bounds on the network capacity are derived. A commensurate lower bound is shown based on Gilbert-Varshamov (GV)-type codes for error-correction. The GV codes used to attain the lower bound can be non-coherent, that is, they require neither prior knowledge of the network topology nor network coding kernels. We also propose a computationally efficient concatenation scheme. The rate achieved by our concatenated codes is characterized by a Zyablov-type lower bound. We provide a generalized minimum-distance decoding algorithm which decodes up to half the minimum distance of the concatenated codes. The end-to-end nature of our design enables our codes to be overlaid on the classical distributed random linear network codes. The other advantage of the end-to-end strategy over the link-by-link error-correction is that it reduces the computational cost at the internal nodes for performing error-correction.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 64, nr 6, s. 4467-4479
Nyckelord [en]
Network error-correcting, worst-case errors, upper and lower bounds
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:kth:diva-230484DOI: 10.1109/TIT.2018.2817801ISI: 000432983500032Scopus ID: 2-s2.0-85044335364OAI: oai:DiVA.org:kth-230484DiVA, id: diva2:1218130
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse
Anmärkning

QC 20180614

Tillgänglig från: 2018-06-14 Skapad: 2018-06-14 Senast uppdaterad: 2018-11-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wang, Qiwen

Sök vidare i DiVA

Av författaren/redaktören
Wang, Qiwen
Av organisationen
Teknisk informationsvetenskap
I samma tidskrift
IEEE Transactions on Information Theory
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 20 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf