Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MD Simulations Reveal Complex Water Paths in Squalene–Hopene Cyclase: Tunnel-Obstructing Mutations Increase the Flow of Water in the Active Site
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
Department of Biological Sciences, Brock University, Ontario, Canada.
KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-1685-4735
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi.ORCID-id: 0000-0002-4066-2776
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: ACS Omega, ISSN 2470-1343, Vol. 2, nr 11, s. 8495-8506Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Squalene–hopene cyclase catalyzes the cyclization of squalene to hopanoids. A previous study has identified a network of tunnels in the protein, where water molecules have been indicated to move. Blocking these tunnels by site-directed mutagenesis was found to change the activation entropy of the catalytic reaction from positive to negative with a concomitant lowering of the activation enthalpy. As a consequence, some variants are faster and others are slower than the wild type (wt) in vitro under optimal reaction conditions for the wt. In this study, molecular dynamics (MD) simulations have been performed for the wt and the variants to investigate how the mutations affect the protein structure and the water flow in the enzyme, hypothetically influencing the activation parameters. Interestingly, the tunnel-obstructing variants are associated with an increased flow of water in the active site, particularly close to the catalytic residue Asp376. MD simulations with the substrate present in the active site indicate that the distance for the rate-determining proton transfer between Asp376 and the substrate is longer in the tunnel-obstructing protein variants than in the wt. On the basis of the previous experimental results and the current MD results, we propose that the tunnel-obstructing variants, at least partly, could operate by a different catalytic mechanism, where the proton transfer may have contributions from a Grotthuss-like mechanism.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2017. Vol. 2, nr 11, s. 8495-8506
Nationell ämneskategori
Biokatalys och enzymteknik Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:kth:diva-234939DOI: 10.1021/acsomega.7b01084ISI: 000418744100113OAI: oai:DiVA.org:kth-234939DiVA, id: diva2:1247980
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Anmärkning

QC 20180914

Tillgänglig från: 2018-09-13 Skapad: 2018-09-13 Senast uppdaterad: 2018-09-18Bibliografiskt granskad
Ingår i avhandling
1. On Catalytic Mechanisms for Rational Enzyme Design Strategies
Öppna denna publikation i ny flik eller fönster >>On Catalytic Mechanisms for Rational Enzyme Design Strategies
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Enzymes enable life by promoting chemical reactions that govern the metabolism of all living organisms. As green catalysts, they have been extensively used in industry. However, to reach their full potential, engineering is often required, which can benefit from a detailed understanding of the underlying reaction mechanism.

In Paper I, we screened for an esterase with promiscuous amidase activity capitalizing on a key hydrogen bond acceptor that is able to stabilize the rate limiting nitrogen inversion. In silicoanalyses revealed the esterase patatin as promising target that indeed catalyzed amide hydrolysis when tested in vitro. While key transition state stabilizers for amide hydrolysis are known, we were interested in increasing our fundamental understanding of terpene cyclase catalysis (Paper II-V). In Paper II, kinetic studies in D2O-enriched buffers using a soluble diterpene cyclase suggested that hydrogen tunneling is part of the rate-limiting protonation step. In Paper III, we performed intense computational analyses on a bacterial triterpene cyclase to show the influence of water flow on catalysis. Water movement in the active site and in specific water channels, influencing transition state formation, was detected using streamline analysis. In Paper IV and V, we focused on the human membrane-bound triterpene cyclase oxidosqualene cyclase. We first established a bacterial expression and purification protocol in Paper IV, before performing detailed in vitroand in silicoanalyses in Paper V. Our analyses showed an entropy-driven reaction mechanism and the existence of a tunnel network in the structure of the human enzyme. The influence of water network rearrangements on the thermodynamics of the transition state formation were confirmed. Introducing mutations in the tunnel lining residues severely affected the temperature dependence of the reaction by changing the water flow and network rearrangements in the tunnels and concomitant the active site.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2018. s. 113
Serie
TRITA-CBH-FOU ; 2018:37
Nyckelord
catalytic mechanisms, terpene cyclase, triterpene cyclase, solvent dynamics, protein hydration, thermodynamics, quantum tunneling, polycyclization, natural compounds, 𝛼/𝛽-hydrolase, esterase, amidase, enzyme engineering, biocatalysis
Nationell ämneskategori
Biokatalys och enzymteknik Biokemi och molekylärbiologi
Forskningsämne
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-234940 (URN)978-91-7729-917-2 (ISBN)
Disputation
2018-10-26, K1, Teknikringen 56, KTH main campus, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Anmärkning

QC 20180914

Tillgänglig från: 2018-09-18 Skapad: 2018-09-13 Senast uppdaterad: 2018-09-19Bibliografiskt granskad

Open Access i DiVA

MD Simulations Reveal Complex Water Paths in Squalene–Hopene Cyclase: Tunnel-Obstructing Mutations Increase the Flow of Water in the Active Site(2335 kB)48 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2335 kBChecksumma SHA-512
220f45e2b417765aa42c42cb472e6b40f217f256f4c5983ef8dacd0c711787975d421895f836169f89d624ca02dcb3bf6ef5ff9f8fc6f552b980ed9602f87d4b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttps://pubs.acs.org/doi/abs/10.1021/acsomega.7b01084

Personposter BETA

Gustafsson, CamillaKürten, CharlotteSyrén, Per-OlofBrinck, Tore

Sök vidare i DiVA

Av författaren/redaktören
Gustafsson, CamillaKürten, CharlotteSyrén, Per-OlofBrinck, Tore
Av organisationen
Tillämpad fysikalisk kemiScience for Life Laboratory, SciLifeLabProteomik och nanobioteknologi
Biokatalys och enzymteknikBiokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 48 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 535 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf