Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Aerothermodynamics and Exergy Analysis in Radial Turbine With Heat Transfer
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0002-2906-9306
KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx). KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.ORCID-id: 0000-0001-7330-6965
2018 (Engelska)Ingår i: Journal of turbomachinery, ISSN 0889-504X, E-ISSN 1528-8900, Vol. 140, nr 9, artikel-id 091007Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study was motivated by the difficulties to assess the aerothermodynamic effects of heat transfer on the performance of turbocharger turbine by only looking at the global performance parameters, and by the lack of efforts to quantify the physical mechanisms associated with heat transfer. In this study, we aimed to investigate the sensitivity of performance to heat loss, to quantify the aerothermodynamic mechanisms associated with heat transfer and to study the available energy utilization by a turbocharger turbine. Exergy analysis was performed based on the predicted three-dimensional flow field by detached eddy simulation (DES). Our study showed that at a specified mass flow rate, (1) pressure ratio drop is less sensitive to heat loss as compared to turbine power reduction, (2) turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost via heat transfer and thermal irreversibilities, and (3) a single-stage turbine is not an effective machine to harvest all the available exhaust energy in the system.

Ort, förlag, år, upplaga, sidor
ASME Press, 2018. Vol. 140, nr 9, artikel-id 091007
Nyckelord [en]
Radial turbine, Detached Eddy Simulation, Exergy analysis, Heat loss
Nationell ämneskategori
Teknik och teknologier Maskinteknik Strömningsmekanik och akustik Farkostteknik
Forskningsämne
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-235796DOI: 10.1115/1.4040852ISI: 000447191900007Scopus ID: 2-s2.0-85053279860OAI: oai:DiVA.org:kth-235796DiVA, id: diva2:1253467
Forskningsfinansiär
Energimyndigheten, 33834-3
Anmärkning

QC 20181009

Tillgänglig från: 2018-10-04 Skapad: 2018-10-04 Senast uppdaterad: 2018-11-14Bibliografiskt granskad
Ingår i avhandling
1. Aerothermodynamics and exergy analysis in turbocharger radial turbine
Öppna denna publikation i ny flik eller fönster >>Aerothermodynamics and exergy analysis in turbocharger radial turbine
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Coupling of turbomachine to reciprocating automotive engine in turbocharging leads to complex fluid flow and thermal characteristics in the turbine. Some undesirable characteristics include heat transfer, flow pulsation and secondary flow due to the complex geometry of the upstream exhaust manifold. The performed literature review exposed that there is a need for an enhanced understanding of the thermo-fluid physics of a turbocharger turbine operating under realistic on-engine conditions, and on quantifying the impact on the performance. Often, simplified set-ups and geometries are employed, neglecting the heat transfer.

This dissertation aimed to improve the quality of heat transfer analysis in a turbocharger turbine, and to enhance the understanding of aerothermodynamic effects due to heat transfer on the performance under engine-like pulsatile flow scenarios. Firstly, a flow exergy based analysis was developed to be used with the input provided by three-dimensional flow field data predicted by Detached Eddy Simulation (DES). Its applicability to identify and to quantify the aerothermodynamic related losses due to heat transfer was thoroughly investigated with a set-up replicating a hot gas stand continuous flow scenario. Next, the developed methodology was applied to engine-like pulsatile flow scenarios, to investigate the effects of flow pulsation and the influences of upstream exhaust manifold on the heat transfer and turbine performance. For the investigated geometry and specified boundary conditions, this dissertation mainly concluded that 1) The most sensitive measures associated with heat loss are the flow exergy lost via heat transfer and the thermal irreversibilities. The influence of heat loss on turbine power reduction is small in a relative sense, and 2) Although the exhaust manifold characteristics govern the fundamental flow physics and heat transfer in the scroll, its impact on the turbine power seems to be small relatively. 

The contributions with this dissertation were mainly twofold. Firstly, it contributes to a deeper understanding of the thermo-fluid physics of a turbocharger turbine operating under engine-like pulsating flow scenario. This knowledge might be useful for industrial product development in the future. Secondly, from academic perspective, the flow exergy budget analysis could potentially serve as a practical example to students in connecting the dots between classroom theory and real life engineering application.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2018. s. 89
Serie
TRITA-SCI-FOU ; 2018:41
Nyckelord
pulsatile exhaust flow, turbine, turbocharger, Detached Eddy Simulation, heat transfer, exergy
Nationell ämneskategori
Strömningsmekanik och akustik
Forskningsämne
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-238833 (URN)978-91-7729-956-1 (ISBN)
Disputation
2018-12-07, Kollegiesalen, Brinellvägen 8, Stockholm, 10:15 (Engelska)
Opponent
Handledare
Anmärkning

QC 20181113

Tillgänglig från: 2018-11-13 Skapad: 2018-11-12 Senast uppdaterad: 2018-11-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=2688317

Personposter BETA

Dahlkild, AndersMihaescu, Mihai

Sök vidare i DiVA

Av författaren/redaktören
Lim, Shyang MawDahlkild, AndersMihaescu, Mihai
Av organisationen
StrömningsfysikCompetence Center for Gas Exchange (CCGEx)MekanikLinné Flow Center, FLOW
I samma tidskrift
Journal of turbomachinery
Teknik och teknologierMaskinteknikStrömningsmekanik och akustikFarkostteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 107 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf