Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Path Clustering with Homology Area
KTH. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..
CUNY Coll Staten Isl, Math Dept, Staten Isl, NY 10314 USA.;CUNY, Grad Ctr, Comp Sci, New York, NY USA..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..ORCID-id: 0000-0003-2965-2953
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..ORCID-id: 0000-0003-1114-6040
2018 (Engelska)Ingår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, s. 7346-7353Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Path clustering has found many applications in recent years. Common approaches to this problem use aggregates of the distances between points to provide a measure of dissimilarity between paths which do not satisfy the triangle inequality. Furthermore, they do not take into account the topology of the space where the paths are embedded. To tackle this, we extend previous work in path clustering with relative homology, by employing minimum homology area as a measure of distance between homologous paths in a triangulated mesh. Further, we show that the resulting distance satisfies the triangle inequality, and how we can exploit the properties of homology to reduce the amount of pairwise distance calculations necessary to cluster a set of paths. We further compare the output of our algorithm with that of DTW on a toy dataset of paths, as well as on a dataset of real-world paths.

Ort, förlag, år, upplaga, sidor
IEEE Computer Society, 2018. s. 7346-7353
Serie
IEEE International Conference on Robotics and Automation ICRA, ISSN 1050-4729
Nationell ämneskategori
Geometri
Identifikatorer
URN: urn:nbn:se:kth:diva-237170ISI: 000446394505086ISBN: 978-1-5386-3081-5 (tryckt)OAI: oai:DiVA.org:kth-237170DiVA, id: diva2:1258256
Konferens
IEEE International Conference on Robotics and Automation (ICRA), MAY 21-25, 2018, Brisbane, AUSTRALIA
Anmärkning

QC 20181024

Tillgänglig från: 2018-10-24 Skapad: 2018-10-24 Senast uppdaterad: 2018-10-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Kragic, DanicaPokorny, Florian T.

Sök vidare i DiVA

Av författaren/redaktören
Carvalho, J. FredericoKragic, DanicaPokorny, Florian T.
Av organisationen
KTHRobotik, perception och lärande, RPL
Geometri

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 185 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf