Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reconstruction of vocal tract geometries from biomechanical simulations
KTH, Skolan för elektroteknik och datavetenskap (EECS), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-8991-1016
GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Tal, musik och hörsel, TMH.ORCID-id: 0000-0003-4532-014X
GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
2018 (Engelska)Ingår i: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Medical imaging techniques are usually utilized to acquire the vocal tract geometry in 3D, which may then be used, eg, for acoustic/fluid simulation. As an alternative, such a geometry may also be acquired from a biomechanical simulation, which allows to alter the anatomy and/or articulation to study a variety of configurations. In a biomechanical model, each physical structure is described by its geometry and its properties (such as mass, stiffness, and muscles). In such a model, the vocal tract itself does not have an explicit representation, since it is a cavity rather than a physical structure. Instead, its geometry is defined implicitly by all the structures surrounding the cavity, and such an implicit representation may not be suitable for visualization or for acoustic/fluid simulation. In this work, we propose a method to reconstruct the vocal tract geometry at each time step during the biomechanical simulation. Complexity of the problem, which arises from model alignment artifacts, is addressed by the proposed method. In addition to the main cavity, other small cavities, including the piriform fossa, the sublingual cavity, and the interdental space, can be reconstructed. These cavities may appear or disappear by the position of the larynx, the mandible, and the tongue. To illustrate our method, various static and temporal geometries of the vocal tract are reconstructed and visualized. As a proof of concept, the reconstructed geometries of three cardinal vowels are further used in an acoustic simulation, and the corresponding transfer functions are derived.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2018.
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Tal- och musikkommunikation
Identifikatorer
URN: urn:nbn:se:kth:diva-239055DOI: 10.1002/cnm.3159ISI: 000458548700001OAI: oai:DiVA.org:kth-239055DiVA, id: diva2:1263543
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 308874
Anmärkning

QC 20181116

Tillgänglig från: 2018-11-15 Skapad: 2018-11-15 Senast uppdaterad: 2019-04-04Bibliografiskt granskad
Ingår i avhandling
1. Computational Modeling of the Vocal Tract: Applications to Speech Production
Öppna denna publikation i ny flik eller fönster >>Computational Modeling of the Vocal Tract: Applications to Speech Production
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Human speech production is a complex process, involving neuromuscular control signals, the effects of articulators' biomechanical properties and acoustic wave propagation in a vocal tract tube of intricate shape. Modeling these phenomena may play an important role in advancing our understanding of the involved mechanisms, and may also have future medical applications, e.g., guiding doctors in diagnosing, treatment planning, and surgery prediction of related disorders, ranging from oral cancer, cleft palate, obstructive sleep apnea, dysphagia, etc.

A more complete understanding requires models that are as truthful representations as possible of the phenomena. Due to the complexity of such modeling, simplifications have nevertheless been used extensively in speech production research: phonetic descriptors (such as the position and degree of the most constricted part of the vocal tract) are used as control signals, the articulators are represented as two-dimensional geometrical models, the vocal tract is considered as a smooth tube and plane wave propagation is assumed, etc.

This thesis aims at firstly investigating the consequences of such simplifications, and secondly at contributing to establishing unified modeling of the speech production process, by connecting three-dimensional biomechanical modeling of the upper airway with three-dimensional acoustic simulations. The investigation on simplifying assumptions demonstrated the influence of vocal tract geometry features — such as shape representation, bending and lip shape — on its acoustic characteristics, and that the type of modeling — geometrical or biomechanical — affects the spatial trajectories of the articulators, as well as the transition of formant frequencies in the spectrogram.

The unification of biomechanical and acoustic modeling in three-dimensions allows to realistically control the acoustic output of dynamic sounds, such as vowel-vowel utterances, by contraction of relevant muscles. This moves and shapes the speech articulators that in turn dene the vocal tract tube in which the wave propagation occurs. The main contribution of the thesis in this line of work is a novel and complex method that automatically reconstructs the shape of the vocal tract from the biomechanical model. This step is essential to link biomechanical and acoustic simulations, since the vocal tract, which anatomically is a cavity enclosed by different structures, is only implicitly defined in a biomechanical model constituted of several distinct articulators.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2018. s. 105
Serie
TRITA-EECS-AVL ; 2018:90
Nyckelord
vocal tract, upper airway, speech production, biomechanical model, acoustic model, vocal tract reconstruction
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Tal- och musikkommunikation
Identifikatorer
urn:nbn:se:kth:diva-239071 (URN)978-91-7873-021-6 (ISBN)
Disputation
2018-12-07, D2, Lindstedtsvägen 5, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20181116

Tillgänglig från: 2018-11-16 Skapad: 2018-11-16 Senast uppdaterad: 2018-11-16Bibliografiskt granskad

Open Access i DiVA

fulltext(2671 kB)36 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2671 kBChecksumma SHA-512
0b085f68f4149c35ae728487ed668b5e0de0ab459909af1f058dddcd58f7c90d02be3a43c613f2cded804039bcbf4fc4f634bc2b788d7eba20340d701ad44f8b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Dabbaghchian, SaeedEngwall, Olov

Sök vidare i DiVA

Av författaren/redaktören
Dabbaghchian, SaeedEngwall, Olov
Av organisationen
Tal, musik och hörsel, TMH
I samma tidskrift
International Journal for Numerical Methods in Biomedical Engineering
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 36 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 185 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf