Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantitative insights from online qualitative data: An example from the health care sector
KTH, Skolan för industriell teknik och management (ITM), Industriell ekonomi och organisation (Inst.).
Univ Ottawa, Telfer Sch Business, Dept Mkt, Ottawa, ON, Canada..
Univ Victoria, Peter B Gustavson Sch Business, Dept Informat Syst, Victoria, BC, Canada..
2018 (Engelska)Ingår i: Psychology & Marketing, ISSN 0742-6046, E-ISSN 1520-6793, Vol. 35, nr 12, s. 1010-1017Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Among the deluge of online data generated by users in the form of text on social media sites, health care reviews are among the most common, and potentially, the most insightful. Patients review and comment on the experiences with procedures as varied as hysterectomies, colonoscopies, and chemotherapy. In their attempts to reduce the uncertainty associated with medical treatments, many patients nowadays also turn to social media, where they rely on the experiences articulated by other patients. In this study, IBM Watson is used to examine how knee replacement patients talk about their emotions and express sentiment through their comments online. Then, a latent class cluster modeling procedure is used to segment these patients into distinct groups, according to their emotions (anger, disgust, fear, happiness, sadness, and surprise), sentiment, and their overall satisfaction with knee replacement surgery. The findings show how qualitative online data can be transformed into quantitative insights regarding underlying market segments, which could then be targeted through different strategies by both marketers and health care practitioners.

Ort, förlag, år, upplaga, sidor
Wiley , 2018. Vol. 35, nr 12, s. 1010-1017
Nyckelord [en]
artificial intelligence, credence goods, health care, latent class (LC) cluster modeling, sentiment analysis
Nationell ämneskategori
Tillämpad psykologi Företagsekonomi
Identifikatorer
URN: urn:nbn:se:kth:diva-239467DOI: 10.1002/mar.21152ISI: 000449717300012Scopus ID: 2-s2.0-85055994129OAI: oai:DiVA.org:kth-239467DiVA, id: diva2:1265764
Anmärkning

QC 20181126

Tillgänglig från: 2018-11-26 Skapad: 2018-11-26 Senast uppdaterad: 2018-11-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Pitt, Christine

Sök vidare i DiVA

Av författaren/redaktören
Pitt, Christine
Av organisationen
Industriell ekonomi och organisation (Inst.)
I samma tidskrift
Psychology & Marketing
Tillämpad psykologiFöretagsekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 33 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf