Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An anomaly detection approach based on machine learning and scada data for condition monitoring of wind turbines
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknisk teori och konstruktion.
Greenbyte AB, Gothenburg, Sweden.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknisk teori och konstruktion.ORCID-id: 0000-0003-4763-9429
2018 (Engelska)Ingår i: 2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents an anomaly detection approach using machine learning to achieve condition monitoring for wind turbines. The approach applies the information in supervisory control and data acquisition systems as data input. First, machine learning is used to estimate the temperature signals of the gearbox component. Then the approach analyzes the deviations between the estimated values and the measurements of the signals. Finally, the information of alarm logs is integrated with the previous analysis to determine the operation states of wind turbines. The proposed approach has been tested with the data experience of a 2MW wind turbine in Sweden. The result demonstrates that the approach can detect possible anomalies before the failure occurrence. It also certifies that the approach can remind operators of the possible changes inside wind turbines even when the alarm logs do not report any alarms.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2018.
Nyckelord [en]
And supervisory control and data acquisition systems, Condition monitoring, Electricity generation, Machine learning, Preventive maintenance, Alarm systems, Artificial intelligence, Learning systems, SCADA systems, Wind turbines, Anomaly detection, Data input, Measurements of, On-machines, Operation state, Scada datum, Temperature signal
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-238018DOI: 10.1109/PMAPS.2018.8440525Scopus ID: 2-s2.0-85053114161ISBN: 9781538635964 (tryckt)OAI: oai:DiVA.org:kth-238018DiVA, id: diva2:1278938
Konferens
2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018, 24 June 2018 through 28 June 2018
Anmärkning

Conference code: 138773; Export Date: 30 October 2018; Conference Paper; Funding details: CSC, China Scholarship Council; Funding text: This work is financed by Chinese Scholarship Council.

QC 20190115

Tillgänglig från: 2019-01-15 Skapad: 2019-01-15 Senast uppdaterad: 2019-01-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Cui, YueBertling Tjernberg, Lina

Sök vidare i DiVA

Av författaren/redaktören
Cui, YueBertling Tjernberg, Lina
Av organisationen
Elektroteknisk teori och konstruktion
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 167 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf