Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On a causal quantum stochastic double product integral related to Levy area
Loughborough Univ, Math Dept, Loughborough LE11 3TU, Leics, England..
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
2018 (Engelska)Ingår i: Annales de l'Institut Henri Poincare (D) Combinatorics, Physics and their Interactions, ISSN 2308-5827, Vol. 5, nr 4, s. 467-512Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We study the family of causal double product integrals Pi(a < x < y < b) (1 + i lambda/2 (dP(x)dQ(y) - dQ(x)dP(y)) + i mu/2 (dP(x)dP(y) + dQ(x)dQ(y))), where P and Q are the mutually noncommuting momentum and position Brownian motions of quantum stochastic calculus. The evaluation is motivated heuristically by approximating the continuous double product by a discrete product in which infinitesimals are replaced by finite increments. The latter is in turn approximated by the second quantisation of a discrete double product of rotation-like operators in different planes due to a result in [15]. The main problem solved in this paper is the explicit evaluation of the continuum limit W of the latter, and showing that W is a unitary operator. The kernel of W - I is written in terms of Bessel functions, and the evaluation is achieved by working on a lattice path model and enumerating linear extensions of related partial orderings, where the enumeration turns out to be heavily related to Dyck paths and generalisations of Catalan numbers.

Ort, förlag, år, upplaga, sidor
European Mathematical Society Publishing House, 2018. Vol. 5, nr 4, s. 467-512
Nyckelord [en]
Causal double product, Levy's stochastic area, position and momentum Brownian motions, linear extensions, Catalan numbers, Dyck paths
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-244164DOI: 10.4171/AIHPD/60ISI: 000457121800001Scopus ID: 2-s2.0-85061457263OAI: oai:DiVA.org:kth-244164DiVA, id: diva2:1289357
Anmärkning

QC 20190218

Tillgänglig från: 2019-02-18 Skapad: 2019-02-18 Senast uppdaterad: 2019-03-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Pei, Yuchen
Av organisationen
Matematik (Inst.)
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 52 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf