Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impedance Spectroscopy Based on Linear System Identification
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.ORCID-id: 0000-0003-0565-9907
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.ORCID-id: 0000-0003-3802-7834
2019 (Engelska)Ingår i: IEEE Transactions on Biomedical Circuits and Systems, ISSN 1932-4545, E-ISSN 1940-9990, Vol. 13, nr 2, s. 396-402Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Impedance spectroscopy is a commonly used mea-surement technique for electrical characterization of a sample-under-test over a wide frequency range. Most measurementmethods employ a sine wave excitation generator, which implies apoint-by-point frequency sweep and a complex readout architec-ture. This paper presents a fast, wide-band, measurement methodfor impedance spectroscopy based on linear system identification.The main advantage of the proposed method is the low hardwarecomplexity, which consists of a 3-level pulse waveform, aninverting voltage amplifier and a general purpose ADC. A proof-of-concept prototype, which is implemented with off-the-shelfcomponents, achieves an estimation fit of approximately 96%.The prototype operation is validated electrically using knownRC component values and tested in real application conditions.

Ort, förlag, år, upplaga, sidor
IEEE, 2019. Vol. 13, nr 2, s. 396-402
Nyckelord [en]
Impedance spectroscopy, system identification, adaptive filtering, pseudo-random waveform, IIR filter, ARX.
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-244757DOI: 10.1109/TBCAS.2019.2900584ISI: 000462410800012PubMedID: 30794518Scopus ID: 2-s2.0-85061964097OAI: oai:DiVA.org:kth-244757DiVA, id: diva2:1291356
Forskningsfinansiär
Vetenskapsrådet
Anmärkning

QC 20190301

Tillgänglig från: 2019-02-25 Skapad: 2019-02-25 Senast uppdaterad: 2019-04-23Bibliografiskt granskad
Ingår i avhandling
1. Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
Öppna denna publikation i ny flik eller fönster >>Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Implantable neural interfaces are microelectronic systems, which have the potential to enable a wide range of applications, such as diagnosis and treatment of neurological disorders. These applications depend on neural interfaces to accurately record electrical activity from the surface of the brain, referred to as electrocorticography (ECoG), and provide controlled electrical stimulation as feedback. Since the electrical activity in the brain is caused by ionic currents in neurons, the bridge between living tissue and inorganic electronics is achieved via microelectrode arrays. The conversion of the ionic charge into freely moving electrons creates a built-in electrode potential that is several orders of magnitude larger than the ECoG signal, which increases the dynamic range, resolution, and power consumption requirements of neural interfaces. Also, the small surface area of microelectrodes implies a high-impedance contact, which can attenuate the ECoG signal. Moreover, the applied electrical stimulation can also interfere with the recording and ultimately cause irreversible damages to the electrodes or change their impedance. This thesis is devoted to resolving the challenges of high-resolution recording and monitoring the electrode impedance in implantable neural interfaces.

The first part of this thesis investigates the state-of-the-art neural interfaces for ECoG and identifies their limitations. As a result of the investigation, a high-resolution ADC is proposed and implemented based on a ΔΣ modulator. In order to enhance performance, dynamic biasing and area-efficient switched-capacitor circuits were proposed. The ΔΣ modulator is combined with the analog front-end to provide a complete readout solution for high-resolution ECoG recording. The corresponding chip prototype was fabricated in a 180 nm CMOS process, and the measurement results showed a 14-ENOB over a 300-Hz bandwidth while dissipating 54-μW.

The second part of this thesis expands upon the well-known methods for impedance measurements and proposes an alternative digital method for monitoring the electrode-tissue interface impedance. The proposed method is based on the system identification technique from adaptive digital filtering, and it is compatible with existing circuitry for neural stimulation. The method is simple to implement and performs wide-band measurements. The system identification was first verified through behavioral simulations and then tested with a board-level prototype in order to validate the functionality under real conditions. The measurement results showed successful identification of the electrode-electrolyte and electrode-skin impedance magnitudes.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 72
Serie
TRITA-EECS-AVL ; 2019:33
Nyckelord
Neural interface, ECoG, high-resolution, ADC, recording, delta-sigma modulator, system identification, impedance measurements
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-249435 (URN)978-91-7873-151-0 (ISBN)
Disputation
2019-05-17, Ka-Sal B (Sal Peter Weissglas), Kistagången 16,, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
VetenskapsrådetStiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20190412

Tillgänglig från: 2019-04-12 Skapad: 2019-04-12 Senast uppdaterad: 2019-04-12Bibliografiskt granskad

Open Access i DiVA

fulltext(16736 kB)75 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 16736 kBChecksumma SHA-512
b2ac970a2f44873dee7ad7148f06fdff568f19184d49d9a68ee79816ece5ba888c5a8510cd9392e7635412015e7963d5bf1874f0676c09a7aa0f9cb14ff9e36e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopushttps://ieeexplore.ieee.org/document/8645649

Personposter BETA

Ivanisevic, NikolaRodriguez, SaulRusu, Ana

Sök vidare i DiVA

Av författaren/redaktören
Ivanisevic, NikolaRodriguez, SaulRusu, Ana
Av organisationen
Integrerade komponenter och kretsar
I samma tidskrift
IEEE Transactions on Biomedical Circuits and Systems
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 75 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 229 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf