Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Grid Technology for Computationally Intensive Applied Bioinformatics Analyses
KTH, Skolan för bioteknologi (BIO), Genteknologi.
KTH, Skolan för bioteknologi (BIO), Genteknologi.
KTH, Skolan för bioteknologi (BIO), Genteknologi.ORCID-id: 0000-0001-8993-048X
KTH, Skolan för bioteknologi (BIO), Genteknologi.ORCID-id: 0000-0003-0996-1644
2006 (Engelska)Ingår i: In Silico Biology, ISSN 1386-6338, Vol. 6, nr 6, s. 495-504Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

For several applications and algorithms used in applied bioinformatics, a bottle neck in terms of computational time may arise when scaled up to facilitate analyses of large datasets and databases. Re-codification, algorithm modification or sacrifices in sensitivity and accuracy may be necessary to accommodate for limited computational capacity of single work stations. Grid computing offers an alternative model for solving massive computational problems by parallel execution of existing algorithms and software implementations. We present the implementation of a Grid-aware model for solving computationally intensive bioinformatic analyses exemplified by a blastp sliding window algorithm for whole proteome sequence similarity analysis, and evaluate the performance in comparison with a local cluster and a single workstation. Our strategy involves temporary installations of the BLAST executable and databases on remote nodes at submission, accommodating for dynamic Grid environments as it avoids the need of predefined runtime environments (preinstalled software and databases at specific Grid-nodes). Importantly, the implementation is generic where the BLAST executable can be replaced by other software tools to facilitate analyses suitable for parallelisation. This model should be of general interest in applied bioinformatics. Scripts and procedures are freely available from the authors.

Ort, förlag, år, upplaga, sidor
2006. Vol. 6, nr 6, s. 495-504
Nyckelord [en]
BLAST, Distributed computing, Grid
Nationell ämneskategori
Industriell bioteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-7795PubMedID: 17518760Scopus ID: 2-s2.0-34250677669OAI: oai:DiVA.org:kth-7795DiVA, id: diva2:12924
Anmärkning
QC 20100622Tillgänglig från: 2007-12-10 Skapad: 2007-12-10 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
Ingår i avhandling
1. Grid and High-Performance Computing for Applied Bioinformatics
Öppna denna publikation i ny flik eller fönster >>Grid and High-Performance Computing for Applied Bioinformatics
2007 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The beginning of the twenty-first century has been characterized by an explosion of biological information. The avalanche of data grows daily and arises as a consequence of advances in the fields of molecular biology and genomics and proteomics. The challenge for nowadays biologist lies in the de-codification of this huge and complex data, in order to achieve a better understanding of how our genes shape who we are, how our genome evolved, and how we function.

Without the annotation and data mining, the information provided by for example high throughput genomic sequencing projects is not very useful. Bioinformatics is the application of computer science and technology to the management and analysis of biological data, in an effort to address biological questions. The work presented in this thesis has focused on the use of Grid and High Performance Computing for solving computationally expensive bioinformatics tasks, where, due to the very large amount of available data and the complexity of the tasks, new solutions are required for efficient data analysis and interpretation.

Three major research topics are addressed; First, the use of grids for distributing the execution of sequence based proteomic analysis, its application in optimal epitope selection and in a proteome-wide effort to map the linear epitopes in the human proteome. Second, the application of grid technology in genetic association studies, which enabled the analysis of thousand of simulated genotypes, and finally the development and application of a economic based model for grid-job scheduling and resource administration.

The applications of the grid based technology developed in the present investigation, results in successfully tagging and linking chromosomes regions in Alzheimer disease, proteome-wide mapping of the linear epitopes, and the development of a Market-Based Resource Allocation in Grid for Scientific Applications.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH, 2007
Serie
Trita-BIO-Report, ISSN 1654-2312 ; 2007:9
Nyckelord
Grid computing, bioinformatics, genomics, proteomics
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
urn:nbn:se:kth:diva-4573 (URN)978-91-7178-782-8 (ISBN)
Disputation
2007-12-21, FD5, AlbaNova, oslagstullsbacken 21, Stockholm, 10:00
Opponent
Handledare
Anmärkning
QC 20100622Tillgänglig från: 2007-12-10 Skapad: 2007-12-10 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

PubMedScopus

Personposter BETA

Uhlén, Mathias

Sök vidare i DiVA

Av författaren/redaktören
Andrade, JorgeBerglund, LisaUhlén, MathiasOdeberg, Jacob
Av organisationen
Genteknologi
I samma tidskrift
In Silico Biology
Industriell bioteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetricpoäng

pubmed
urn-nbn
Totalt: 354 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf