Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parameter bias in misspecified Hybrid Choice Models: An empirical study.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Systemanalys och ekonomi.ORCID-id: 0000-0003-4512-9054
2018 (Engelska)Ingår i: Transportation Research Procedia, Elsevier B.V. , 2018, s. 99-106Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Model misspecification is likely to occur when working with real datasets. However, previous studies showing the advantages of hybrid choice models have mostly used models where structural and measurement equations match the functions employed in the data generating process, especially when parameter biases were discussed. The aim of this study is to investigate the extent of parameter bias in misspecified hybrid choice models, and assess if different modelling assumptions impact the parameter estimates of the choice model. For this task, a mode choice model is estimated on synthetic data with efforts focus on mimicking the conditions present in real datasets, where the postulated structural and measurement equations are less flexible than the functions used to generate the data. Results show that hybrid choice models, even if misspecified, manage to recover better parameter estimates than a multinomial logit. However, hybrid choice models are not unbeatable, as results also indicate that misspecified hybrid choice models might still yield biased parameter estimates. Moreover, results suggest that hybrid choice models successfully isolate the source of model bias, preventing its propagation to other parameter estimates. Results also show that parameter estimates from hybrid choice models are sensible to modelling assumptions, and that parameter estimates of the utility function are robust given that errors are modelled.

Ort, förlag, år, upplaga, sidor
Elsevier B.V. , 2018. s. 99-106
Nyckelord [en]
Hybrid Choice Models (HCM), Integrated Choice, Latent Variable models (ICLV), Latent variables, Mode choice, Model misspecification, Parameter bias, Synthetic dataset
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:kth:diva-247474DOI: 10.1016/j.trpro.2018.10.081Scopus ID: 2-s2.0-85057150519OAI: oai:DiVA.org:kth-247474DiVA, id: diva2:1302581
Konferens
13th Conference on Transport Engineering, CIT 2018, 6 June 2018 through 8 June 2018
Anmärkning

QC20190405

Tillgänglig från: 2019-04-05 Skapad: 2019-04-05 Senast uppdaterad: 2019-04-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lorenzo Varela, Juan Manuel

Sök vidare i DiVA

Av författaren/redaktören
Lorenzo Varela, Juan Manuel
Av organisationen
Systemanalys och ekonomi
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 133 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf