Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tip-vortex instabilities of two in-line wind turbines
KTH, Skolan för teknikvetenskap (SCI).
KTH, Skolan för teknikvetenskap (SCI).
KTH, Skolan för teknikvetenskap (SCI).ORCID-id: 0000-0002-5913-5431
KTH, Skolan för teknikvetenskap (SCI).ORCID-id: 0000-0001-7864-3071
2019 (Engelska)Proceedings (redaktörskap) (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2019.
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
URN: urn:nbn:se:kth:diva-251408OAI: oai:DiVA.org:kth-251408DiVA, id: diva2:1315536
Anmärkning

QC 20190619

Tillgänglig från: 2019-05-14 Skapad: 2019-05-14 Senast uppdaterad: 2019-06-19Bibliografiskt granskad
Ingår i avhandling
1. Wind-turbine wakes - Effects of yaw, shear and turbine interaction
Öppna denna publikation i ny flik eller fönster >>Wind-turbine wakes - Effects of yaw, shear and turbine interaction
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Vindturbinsvakar –Effekten av girning, skjuvning och turbininteraktion
Abstract [en]

The actuator-line method is used together with the incompressible Navier–Stokes equations to investigate the flow development behind wind turbines. Initial investigations focus on providing a thorough validation of the implementation in the spectral-element flow solver Nek5000 against existing numerical and experimental datasets. It is shown that the current implementation gives an accurate representation of the flow field for different turbine geometries, inflow conditions, yaw misalignment, and when considering multiple turbines. This enables an in-depth study of the wake physics in these configurations.

The yawed wind-turbine wake development is shown to depend on the tip-speed ratio, both in terms of the wake deficit and the generation of the counter-rotating vortices known to occur in yawed turbine wakes. For lower tip-speed ratios the wake deficit exhibited significant asymmetries with respect to the horizontal plane due to the advancing/retreating effect. At high tip-speed ratios this effect became negligible compared to the skewed wake effect, which affects the symmetry with respect to the vertical plane. These inhomogeneities in the averaged wake development also affect the tip-vortex breakdown, leading to different locations of the tip-vortex breakdown along the wake azimuth due to the significant azimuthal variations of the tip-vortex strength and convection velocity. An analysis of the interaction of a yawed wind-turbine wake with a sheared inflow exposed a dependency of the wake deflection and recovery on the yaw orientation, which then resulted in significant differences in the combined power output of a two-turbine setup. More detailed studies of the tip-vortex breakdown in sheared flows using single-frequency perturbations revealed that a sheared inflow changes the spatial growth rate of the tip vortices along the vertical axis, due to the varying tip-vortex convection velocity. However, by applying a scaling based on local vortex parameters, the growth rates collapse to the canonical case of an infinite row of point vortices. Finally, an idealized scenario of two in-line turbines with a steady tip-vortex development is investigated. By applying a range of controlled perturbations, modes were excited, which exhibited in-phase or out-of-phase displacement between the vortex system of the upstream and the downstream turbine for certain frequencies.

Abstract [sv]

Den så kallade actuator line-metoden används tillsammans med inkompressibla Navier–Stokes ekvationer för att undersöka strömningens utveckling bakom vindturbiner. Inledande studier syftar till att utförligt validera implementationen i spektralelementkoden Nek5000 mot befintliga numeriska och experimentella datamängder. Det visas att den nuvarande implementationen ger en noggrann representation av strömningsfältet för alla undersökta turbingeometrier. Vidare fångas utvecklingen hos vaken väl för en rad olika inflödesvillkor, förturbingirning, och under interaktion mellan flera turbiner.

Vakutvecklingen för en girad turbin visas bero signifikant på kvoten mellan vingspetsens och friströmmens hastighet, både när det gäller hastighetsunderskottet i vaken och bildningen av de motroterande vakvirvlarna. För låga hastighetskvoter mellan vingspetsen och friströmmen uppvisar vakens hastighetsunderskott en betydande asymmetri med avseende på horisontalplanet genom en så kallad avancerande/retirerande effekt. För höga hastighetskvoter blir denna effekt däremot försumbar i jämförelse med vakens skevhet som påverkar symmetrin med avseende på vertikalplanet. Dessa inhomogeniteter i den medelvärdesbildade vakutvecklingen påverkar också det turbulenta nedbrottet hos vingspetsvirvlarna, vilket inträffar vid olika positioner i vinkelled på grund av signifikanta vinkelvariationer hos virvelstyrkan och konvektionshastigheten. En analys of interaktionen mellan en girad turbinvak och en inkommande skjuvströmning avslöjar ett beroende hos vakens förskjutning och återhämtning på girningens riktning, vilket resulterar i betydande skillnader i den sammantagna effekten hos två turbiner. Mer detaljerade studier av spetsvirvlarnas nedbrott i skjuvströmningar med enfrekvensstörningar visar att ett skjuvat inflöde förändrar den spatiella tillväxtgraden längs den vertikala axeln på grund av varierande konvektionshastighet hos spetsvirvlarna.Tillväxtgraderna sammanfaller dock med motsvarande värde för det klassiska fallet med två oändliga virvelrader, om de skalas med lokala virvelparametrar. Slutligen studeras en stationär virvelutveckling för ett idealiserat fall bestående av två turbiner i linje med varandra. Genom att applicera en rad kontrollerade störningar, exciteras moder som beroende på frekvens uppvisar förskjutningar i eller ur fas med virvelsystemen från turbinen uppströms och nedströms.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2019. s. 58
Serie
TRITA-SCI-FOU ; 2019:29
Nyckelord
wind-turbine wakes, yaw, tip-vortex breakdown, shear, computational fluid dynamics, actuator-line method, spectral-element method, Vindturbinsvakar, girning, turbulent nedbrott hos spetsvirvlar, skjuvning, vakinteraktion, beräkningsströmningsdynamik, actuator line-metod, spektralelementmetod
Nationell ämneskategori
Strömningsmekanik och akustik
Forskningsämne
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-251450 (URN)
Disputation
2019-06-04, H1, Teknikringen 33, Stockholm, 13:50 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Energimyndigheten
Anmärkning

QC20190514

Tillgänglig från: 2019-05-14 Skapad: 2019-05-14 Senast uppdaterad: 2019-05-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Kleine, VitorHanifi, ArdeshirHenningson, Dan S.

Sök vidare i DiVA

Av författaren/redaktören
Kleine, VitorKleusberg, ElektraHanifi, ArdeshirHenningson, Dan S.
Av organisationen
Skolan för teknikvetenskap (SCI)
Strömningsmekanik och akustik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 72 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf