Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Kazantsev dynamo in turbulent compressible flows
Univ Porto, Fac Ciencias, Ctr Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal..
KTH, Centra, Nordic Institute for Theoretical Physics NORDITA.ORCID-id: 0000-0001-6162-7112
Univ Cote dAzur, CNRS, LJAD, F-06100 Nice, France..
2019 (Engelska)Ingår i: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, ISSN 1364-5021, E-ISSN 1471-2946, Vol. 475, nr 2223, artikel-id 20180591Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider the kinematic fluctuation dynamo problem in a flow that is random, white-in-time, with both solenoidal and potential components. This model is a generalization of the well-studied Kazantsev model. If both the solenoidal and potential parts have the same scaling exponent, then, as the compressibility of the flow increases, the growth rate decreases but remains positive. If the scaling exponents for the solenoidal and potential parts differ, in particular if they correspond to typical Kolmogorov and Burgers values, we again find that an increase in compressibility slows down the growth rate but does not turn it off. The slow down is, however, weaker and the critical magnetic Reynolds number is lower than when both the solenoidal and potential components display the Kolmogorov scaling. Intriguingly, we find that there exist cases, when the potential part is smoother than the solenoidal part, for which an increase in compressibility increases the growth rate. We also find that the critical value of the scaling exponent above which a dynamo is seen is unity irrespective of the compressibility. Finally, we realize that the dimension d = 3 is special, as for all other values of d the critical exponent is higher and depends on the compressibility.

Ort, förlag, år, upplaga, sidor
ROYAL SOC , 2019. Vol. 475, nr 2223, artikel-id 20180591
Nyckelord [en]
dynamo theory, compressible turbulence, Kazantsev model
Nationell ämneskategori
Annan fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-252411DOI: 10.1098/rspa.2018.0591ISI: 000465427200010PubMedID: 31007546Scopus ID: 2-s2.0-85064244183OAI: oai:DiVA.org:kth-252411DiVA, id: diva2:1337603
Anmärkning

QC 20190716

Tillgänglig från: 2019-07-16 Skapad: 2019-07-16 Senast uppdaterad: 2019-07-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Mitra, Dhrubaditya

Sök vidare i DiVA

Av författaren/redaktören
Mitra, Dhrubaditya
Av organisationen
Nordic Institute for Theoretical Physics NORDITA
I samma tidskrift
Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 145 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf