Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Joint Image Deconvolution and Separation Using Mixed Dictionaries
Azarbaijan Shahid Madani Univ, Dept Appl Math, Tabriz 5375171379, Iran..
Azarbaijan Shahid Madani Univ, Dept Appl Math, Tabriz 5375171379, Iran..
Azarbaijan Shahid Madani Univ, Dept Appl Math, Tabriz 5375171379, Iran..
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. SciLifeLab, Adv Light Microscopy Facil, S-17165 Solna, Sweden..ORCID-id: 0000-0003-0578-4003
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 28, nr 8, s. 3936-3945Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The task of separating an image into distinct components that represent different features plays an important role in many applications. Traditionally, such separation techniques are applied once the image in question has been reconstructed from measured data. We propose an efficient iterative algorithm, where reconstruction is performed jointly with the task of separation. A key assumption is that the image components have different sparse representations. The algorithm is based on a scheme that minimizes a functional composed of a data discrepancy term and the l(1)-norm of the coefficients of the different components with respect to their corresponding dictionaries. The performance is demonstrated for joint 2D deconvolution and separation into curve- and point-like components, and tests are performed on synthetic data as well as experimental stimulated emission depletion and confocal microscopy data. Experiments show that such a joint approach outperforms a sequential approach, where one first deconvolves data and then applies image separation.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2019. Vol. 28, nr 8, s. 3936-3945
Nyckelord [en]
Inverse problems, image separation, sparse recovery, curvelets, wavelets
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:kth:diva-255299DOI: 10.1109/TIP.2019.2903316ISI: 000472609200006PubMedID: 30843839Scopus ID: 2-s2.0-85067800119OAI: oai:DiVA.org:kth-255299DiVA, id: diva2:1339541
Anmärkning

QC 20190730

Tillgänglig från: 2019-07-30 Skapad: 2019-07-30 Senast uppdaterad: 2019-07-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Brismar, HjalmarÖktem, Ozan

Sök vidare i DiVA

Av författaren/redaktören
Brismar, HjalmarÖktem, Ozan
Av organisationen
BiofysikScience for Life Laboratory, SciLifeLabMatematik (Avd.)
I samma tidskrift
IEEE Transactions on Image Processing
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 72 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf