Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating precipitation datasets for large-scale distributed hydrological modelling
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
2019 (Engelska)Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 578Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We are experiencing a proliferation of satellite derived precipitation datasets. Advantages and limitations of their promising application in hydrological modelling application have been broadly investigated. However, most studies have analysed only the performance of one or few datasets, were limited to selected small-scale case studies or used lumped models when investigating large-scale basins.

In this study, we compared the performance of 18 different precipitation datasets when used as main forcing in a grid-based distributed hydrological model to assess streamflow in medium to large-scale river basins. These datasets are classified as Uncorrected Satellites (Class 1), Corrected Satellites (Class 2) and Reanalysis – Gauges based datasets (Class 3). To provide a broad-based analysis, 8 large-scale river basins (Amazon, Brahmaputra, Congo, Danube, Godavari, Mississippi, Rhine and Volga) having different sizes, hydrometeorological characteristics, and human influence were selected. The distributed hydrological model was recalibrated for each precipitation dataset individually.

We found that there is not a unique best performing precipitation dataset for all basins and that results are very sensitive to the basin characteristics. However, a few datasets persistently outperform the others: SM2RAIN-ASCAT for Class 1, CHIRPS V2.0, MSWEP V2.1, and CMORPH-CRTV1.0 for Class 2, GPCC and WFEDEI GPCC for Class 3. Surprisingly, precipitation datasets showing the highest model accuracy at basin outlets do not show the same high performance in internal locations, supporting the use of distributed modelling approach rather than lumped.

Ort, förlag, år, upplaga, sidor
2019. Vol. 578
Nationell ämneskategori
Oceanografi, hydrologi och vattenresurser
Identifikatorer
URN: urn:nbn:se:kth:diva-256544DOI: 10.1016/j.jhydrol.2019.124076Scopus ID: 2-s2.0-85071308400OAI: oai:DiVA.org:kth-256544DiVA, id: diva2:1346454
Anmärkning

QC 20190829

Tillgänglig från: 2019-08-28 Skapad: 2019-08-28 Senast uppdaterad: 2019-10-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Brandimarte, Luigia

Sök vidare i DiVA

Av författaren/redaktören
Brandimarte, Luigia
Av organisationen
Hållbar utveckling, miljövetenskap och teknik
I samma tidskrift
Journal of Hydrology
Oceanografi, hydrologi och vattenresurser

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 10 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf