kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alc33oholic fatty liver disease
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0002-3721-8586
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0003-2261-0881
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 16, nr 4Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.

Ort, förlag, år, upplaga, sidor
EMBO , 2020. Vol. 16, nr 4
Nyckelord [en]
NAFLD, l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine, systems medicine
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
URN: urn:nbn:se:kth:diva-277220DOI: 10.15252/msb.209495ISI: 000530421100005PubMedID: 32337855Scopus ID: 2-s2.0-85084170451OAI: oai:DiVA.org:kth-277220DiVA, id: diva2:1454036
Anmärkning

QC 20200714

Tillgänglig från: 2020-07-14 Skapad: 2020-07-14 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Ingår i avhandling
1. Systems and Network-based Approaches to Complex Metabolic Diseases
Öppna denna publikation i ny flik eller fönster >>Systems and Network-based Approaches to Complex Metabolic Diseases
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The future of healthcare is personalized medicine, in which disease treatments are tailored based on the individual characteristics of each patient. To reach that objective, we need to obtain a better understanding of diseases. The main facilitator of personalized medicine is systems and data-driven biology, which makes omics data a top commodity in this era. Coupled with computational and biological expertise, omics data can be a useful asset for obtaining mechanistic insights into the biological conundrum, particularly in disease-related contexts. This thesis describes systems biology approaches and their applications in disease-specific contexts. Systems biology assists us in systematically and comprehensively understanding complex biological systems as a whole interconnected system.

The first part of the thesis describes the generation of more than 100 biological networks based on personalized data originated from several different omics, usually referred to as multiomics data, including clinical data and metabolomics, proteomics, and metagenomics data collected from the same individuals. Moreover, we present a web-based multiomics biological network database and visualization platform called iNetModels.

In the second part of the thesis, we describe systems biology frameworks and their applications to the study of various biological questions in disease contexts using single- and multiomics data. First, we present our findings on the integrative view of metabolic activities from multiple tissues after myocardial infarction using transcriptomics data from the heart and other metabolically active tissues. Second, we used transcriptomics data to describe the mechanistic effect of lifelong training on skeletal muscle in both men and women and the role of short-term training in reversing damage from metabolic-related diseases. Third, we deciphered the molecular mechanism of nonalcoholic fatty liver disease (NAFLD) based on clinical data, plasma metabolomics, plasma inflammatory proteomics, and oral and gut metagenomics data. Finally, we elucidated the mechanism of action of CMA supplementation, a potential treatment for NAFLD, based on proteomics and metabolomics data.

In summary, this thesis presents a novel platform for biological network analysis and proven systems biology frameworks to provide mechanistic and systematic understandings of specific diseases using single- and multiomics data.

Abstract [sv]

Framtiden för hälsovård är precisionsmedicin; behandling av sjukdomskräddarsys baserat på de individualla egenskaper hos varje enskildpatient. För att nå detta mål behöver vi öka vår kunskap om sjukdomar.Det främsta hjälpmedlet för att utveckla precisionsmedicin är system- ochdatadriven biologi, vilket i sin tur gör omikdata till en viktig resurs isamtiden. Omikdata kan kombineras med expertis inomberäkningsbiologi för att på så vis vara en värdeful tillgång för att få insyni biologiska mekanismer, särskilt inom sjukdomskontext. Dennaavhandling beskriver strategier inom systembiologi, och deras appliceringför specifika sjukdomar.

Den första delen av avhandlingen beskriver utvecklandet av mer än 100biologiska nätverk baserade på personaliserad multiomik-data, inklusiveklinisk data samt metabolomik-, proteomik-, och metagenomikdata,insamlat från samma individer. Dessutom presenterar vi en webb-baseraddatabas innehållande biologiska nätverk byggda från multiomik-data,samt en visualiseringsplatform vid namn iNetModels.

I den andra delen av avhandlingen beskriver vi systembiologiska ramverkoch deras applicering för studier av olika sorters biologiska frågor inomsjukdomskontext, genom att använda en eller flera sorters omikdata. Förstpresenterar vi våra fynd om den integrativa vyn av metaboliska aktiviteterfrån flertalet vävnader efter hjärtinfarkt, genom att användatranskriptomikdata både från hjärtat och andra metaboliskt aktivavävnader. Sedan använde vi transkriptomikdata för att beskriva denmekanistiska effekten av livslång träning av skelettmuskel i både män ochkvinnor, samt vilken roll kortsiktig träning har i att läka skador frånmetabolismrelaterade sjukdomar. Efter det dechiffrerade vi denmolekylära mekanismen bakom nonalcoholic fatty liver disease (NAFLD),eller fettlever, baserat på kliniska data, plasma-metabolomik,inflammatorisk plasma-proteomik, samt metagenomikdata från månhålaoch tarmkanal. Till sist tydliggjorde vi mekanismen av CMAsupplementrering, en potentiell behandling av NAFLD, baserat påproteomik- och metabolomikdata.

Sammanfattningsvis beskriver denna avhandling en ny plattform förbiologisk nätverksanalys och bevisade systembiologiska ramverk för attutröna mekanistisk och systematisk förståelse för specifika sjukdomar,genom att använda singel- eller multiomikdata.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2021. s. 75
Serie
TRITA-CBH-FOU ; 2021:23
Nationell ämneskategori
Bioinformatik och beräkningsbiologi
Forskningsämne
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-294200 (URN)978-91-7873-880-9 (ISBN)
Disputation
2021-06-11, https://kth-se.zoom.us/webinar/register/WN_Si0EW3vKRKSYkKek533ohQ, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 2021-05-11

Tillgänglig från: 2021-05-11 Skapad: 2021-05-11 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Zhang, ChengArif, MuhammadAbdellah, TebaniLovric, AlenBenfeitas, RuiJuszczak, KajetanKim, WoongheeUhlén, MathiasMardinoglu, Adil

Sök vidare i DiVA

Av författaren/redaktören
Zhang, ChengArif, MuhammadAbdellah, TebaniLovric, AlenBenfeitas, RuiOzcan, MehmetJuszczak, KajetanKim, WoongheeKim, Jung TaeUhlén, MathiasMardinoglu, Adil
Av organisationen
Science for Life Laboratory, SciLifeLabSystembiologi
I samma tidskrift
Molecular Systems Biology
BiokemiMolekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 140 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf