kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recursive Prediction of Graph Signals with Incoming Nodes
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0003-1285-8947
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0003-2638-6047
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0002-1927-1690
2020 (Engelska)Ingår i: 2020 IEEE International Conference on Acoustics, Speech, And Signal Processing, Institute of Electrical and Electronics Engineers (IEEE), 2020, s. 5565-5569, artikel-id 9053145Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Kernel and linear regression have been recently explored in the prediction of graph signals as the output, given arbitrary input signals that are agnostic to the graph. In many real-world problems, the graph expands over time as new nodes get introduced. Keeping this premise in mind, we propose a method to recursively obtain the optimal prediction or regression coefficients for the recently proposed Linear Regression over Graphs (LRG), as the graph expands with incoming nodes. This comes as a natural consequence of the structure of the regression problem, and obviates the need to solve a new regression problem each time a new node is added. Experiments with real-world graph signals show that our approach results in a good prediction performance which tends to be close to that obtained from knowing the entire graph apriori.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2020. s. 5565-5569, artikel-id 9053145
Serie
International Conference on Acoustics Speech and Signal Processing ICASSP, ISSN 1520-6149
Nyckelord [en]
Linear regression, graph expansion, graph signal processing, recursive least squares, convex optimization
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-292373DOI: 10.1109/ICASSP40776.2020.9053145ISI: 000615970405165Scopus ID: 2-s2.0-85089231874OAI: oai:DiVA.org:kth-292373DiVA, id: diva2:1544734
Konferens
2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020; Barcelona; Spain; 4 May 2020 through 8 May 2020
Anmärkning

QC 20210416

Tillgänglig från: 2021-04-16 Skapad: 2021-04-16 Senast uppdaterad: 2023-04-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Venkitaraman, ArunChatterjee, SaikatWahlberg, Bo

Sök vidare i DiVA

Av författaren/redaktören
Venkitaraman, ArunChatterjee, SaikatWahlberg, Bo
Av organisationen
ReglerteknikTeknisk informationsvetenskap
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 35 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf