kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Augmentation of IMU Signals and Evaluation via a Semi-Supervised Classification of Driving Behavior
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Systemanalys och ekonomi.
Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA..
Politecn Torino, Dept Math Sci, Turin, Italy.;Lund Univ, Dept Automat Control, Lund, Sweden..
2020 (Engelska)Ingår i: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC), IEEE , 2020Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Over the past years, interest in classifying drivers' behavior from data has surged. Such interest is particularly relevant for car insurance companies who, due to privacy constraints, often only have access to data from Inertial Measurement Units (IMU) or similar. In this paper, we present a semi-supervised learning solution to classify portions of trips according to whether drivers are driving aggressively or normally based on such IMU data. Since the amount of labeled IMU data is limited and costly to generate, we utilize Recurrent Conditional Generative Adversarial Networks (RCGAN) to generate more labeled data. Our results show that, by utilizing RCGAN-generated labeled data, the classification of the drivers is improved in 79% of the cases, compared to when the drivers are classified with no generated data.

Ort, förlag, år, upplaga, sidor
IEEE , 2020.
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Nyckelord [en]
IMU sensor, driving behaviors, data generation, data evaluation
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-302638DOI: 10.1109/ITSC45102.2020.9294496ISI: 000682770702001Scopus ID: 2-s2.0-85099661398OAI: oai:DiVA.org:kth-302638DiVA, id: diva2:1600208
Konferens
23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), SEP 20-23, 2020, ELECTR NETWORK
Anmärkning

QC 20211004

Tillgänglig från: 2021-10-04 Skapad: 2021-10-04 Senast uppdaterad: 2023-04-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Jaafer, Amani

Sök vidare i DiVA

Av författaren/redaktören
Jaafer, Amani
Av organisationen
Systemanalys och ekonomi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 125 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf