kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Point-based methods for model checking in partially observable markov decision processes
KTH. Stanford University.
Stanford University.
2020 (Engelska)Ingår i: Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI press , 2020, s. 10061-10068Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Autonomous systems are often required to operate in partially observable environments. They must reliably execute a specified objective even with incomplete information about the state of the environment. We propose a methodology to synthesize policies that satisfy a linear temporal logic formula in a partially observable Markov decision process (POMDP). By formulating a planning problem, we show how to use pointbased value iteration methods to efficiently approximate the maximum probability of satisfying a desired logical formula and compute the associated belief state policy.We demonstrate that our method scales to large POMDP domains and provides strong bounds on the performance of the resulting policy.

Ort, förlag, år, upplaga, sidor
AAAI press , 2020. s. 10061-10068
Nyckelord [en]
Artificial intelligence, Behavioral research, Iterative methods, Markov processes, Autonomous systems, Incomplete information, Linear temporal logic, Maximum probability, Partially observable environments, Partially observable Markov decision process, Point-based methods, Point-based value iterations, Model checking
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-303221ISI: 000668126802061Scopus ID: 2-s2.0-85093849506OAI: oai:DiVA.org:kth-303221DiVA, id: diva2:1602059
Konferens
AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
Anmärkning

QC 20211011

Conference ISBN 9781577358350

Tillgänglig från: 2021-10-11 Skapad: 2021-10-11 Senast uppdaterad: 2022-12-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Sök vidare i DiVA

Av författaren/redaktören
Bouton, Maxine
Av organisationen
KTH
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 32 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf