kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
2D continuous Chebyshev-Galerkin time-spectral method
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.ORCID-id: 0000-0003-0160-4060
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. (Fusionsplasmafysik)ORCID-id: 0000-0001-6379-1880
2022 (Engelska)Ingår i: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 271, s. 108217-108217, artikel-id 108217Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.

Ort, förlag, år, upplaga, sidor
Elsevier BV , 2022. Vol. 271, s. 108217-108217, artikel-id 108217
Nyckelord [en]
Chebyshev, Time-spectral, GWRM, ODE, PDE, GPU
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-304741DOI: 10.1016/j.cpc.2021.108217ISI: 000720461800001Scopus ID: 2-s2.0-85118825651OAI: oai:DiVA.org:kth-304741DiVA, id: diva2:1610366
Anmärkning

QC 20211123

Tillgänglig från: 2021-11-10 Skapad: 2021-11-10 Senast uppdaterad: 2024-11-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttps://www.sciencedirect.com/science/article/pii/S0010465521003295?via%3Dihub

Person

Lindvall, KristofferScheffel, Jan

Sök vidare i DiVA

Av författaren/redaktören
Lindvall, KristofferScheffel, Jan
Av organisationen
Fusionsplasmafysik
I samma tidskrift
Computer Physics Communications
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 154 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf