kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Category Theory Framework for Variability Models with Non-functional Requirements
Univ Malaga, ITIS Software, Malaga, Spain.;Univ Malaga, Dept LCC, Andalucia Tech, CAOSD, Malaga, Spain..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Teoretisk datalogi, TCS.ORCID-id: 0000-0002-0074-8786
Univ Malaga, ITIS Software, Malaga, Spain.;Univ Malaga, Dept LCC, Andalucia Tech, CAOSD, Malaga, Spain..
Univ Malaga, ITIS Software, Malaga, Spain.;Univ Malaga, Dept LCC, Andalucia Tech, CAOSD, Malaga, Spain..
2021 (Engelska)Ingår i: Advanced Information Systems Engineering (Caise 2021) / [ed] LaRosa, M Sadiq, S Teniente, E, SPRINGER INTERNATIONAL PUBLISHING AG , 2021, Vol. 12751, s. 397-413Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In Software Product Line (SPL) engineering one uses Variability Models (VMs) as input to automated reasoners to generate optimal products according to certain Quality Attributes (QAs). Variability models, however, and more specifically those including numerical features (i.e., NVMs), do not natively support QAs, and consequently, neither do automated reasoners commonly used for variability resolution. However, those satisfiability and optimisation problems have been covered and refined in other relational models such as databases. Category Theory (CT) is an abstract mathematical theory typically used to capture the common aspects of seemingly dissimilar algebraic structures. We propose a unified relational modelling framework subsuming the structured objects of VMs and QAs and their relationships into algebraic categories. This abstraction allows a combination of automated reasoners over different domains to analyse SPLs. The solutions' optimisation can now be natively performed by a combination of automated theorem proving, hashing, balanced-trees and chasing algorithms. We validate this approach by means of the edge computing SPL tool HADAS.

Ort, förlag, år, upplaga, sidor
SPRINGER INTERNATIONAL PUBLISHING AG , 2021. Vol. 12751, s. 397-413
Serie
Lecture Notes in Computer Science, ISSN 0302-9743
Nyckelord [en]
Numerical variability model, Feature, Non-functional requirement, Quality attribute, Category theory
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-305416DOI: 10.1007/978-3-030-79382-1_24ISI: 000716947800024Scopus ID: 2-s2.0-85111462241OAI: oai:DiVA.org:kth-305416DiVA, id: diva2:1615888
Konferens
33rd International Conference on Advanced Information Systems Engineering (CAiSE), JUN 28-JUL 02, 2021, ELECTR NETWORK
Anmärkning

Part of proceedings: ISBN 978-3-030-79382-1, QC 20230118

Tillgänglig från: 2021-12-01 Skapad: 2021-12-01 Senast uppdaterad: 2023-01-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gurov, Dilian

Sök vidare i DiVA

Av författaren/redaktören
Gurov, Dilian
Av organisationen
Teoretisk datalogi, TCS
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 73 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf