kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annat format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annat språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf
Mathematical modelling of Degussa Furnace
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
2021 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
##### Abstract [en]

The energy demands in the world is rapidly increasing and with this,  a supply nuclear  power  is  of  much  interest.    Nuclear  fuel  is  relatively  efficient  when comparing to power sources like wind­ and hydropower plants. Pellets are used as fuel by many plants however, its main concern is to find maximize cost efficiency and  minimize  fuel­waste.   Studying  how  to  get  the  pellets  to  be  as  optimal  as possible is of massive importance and in huge focus in order to match the worlds power demand.

These  pellets  are  sintered  in  a  furnace  type  known  as  ”pusher­type”  furnaces that functions continuously and is incredibly efficient when it comes to its heat transfer capacity and high­performance output.  In this sintering process, a gas­ flow from the opposite side from the pellets interacts with the solid pellets in order to get the desired reaction. However, the turbulence and the nature of the multi­ phase flow problem causes many unknown interactions and the main focus is do create a theoretical model based on the process parameters to understand what is happening in the furnace.

In this study, a simplified model of the inside of the furnace chamber was created in order to observe where and when in the furnace a dissociation from CO2 to CO + O2 would occur. Data given by Westinghouse was put into a mathematical model created in MATLAB and parameters given by the thermodynamic model was in turn put in to ANSYS, a program based on Computational Fluid Dynamics for a simulation. The simulation was considered a success when the gas­mix goes from 3% CO2 to 0.4%. The CFD of the model estimates this to happen at 250 seconds, where as the thermodynamic model predicts the exchange time to be about 200 seconds.   This study is a major first step in understanding the dynamics of the furnace.

##### Abstract [sv]

Energibehovet i världen ökar snabbt och då blir ett stadigt tillförsel av kärnenergi mycket intressant.  Kärnbränsle är relativt effektivt jämfört med kraftkällor som vind­  och  vattenkraftverk.    Pellets  används  som  bränsle  av många  kraftverk och då blir det ett upphov att hitta maximal kostnadseffektivitet och minimera bränsleavfall.  Att forska fram till hur man gör pellets så optimala som möjligt är av enorm betydelse och i stort fokus för att matcha världens energi behov.

Dessa pellets sintras i en ugnstyp som kallas ”pusher­type” ugnar som fungerar kontinuerligt och är otroligt effektiva när det gäller dess värmeöverförings-kapacitet och högpresterande effekt.  I denna sintringsprocess startar ett gasflöde från motsatt sida från pelletsen med de fasta pelletsen för att få den önskade reaktionen.  Det blir ett flerfasigt flödesproblem och orsakar många okända interaktioner och huvudfokus är att skapa en teoretisk modell baserad på processparametrarna för att förstå vad som händer i ugnen.

I  denna  studie  gjordes  en  förenklad  modell  av  ugnskammarens  insida för  att observera var och när i ugnen en dissociation från CO2 till CO + O2 skulle inträffa. Data från Westinghouse placerades i en matematisk modell skapad i MATLAB och  parametrar  som  gavs  av  den  termodynamiska modellen  lades  i  sin  tur  till ANSYS, ett program baserat på Computational Fluid Dynamics för en simulering. Simuleringen ansågs vara färdig när gasblandningen går från 3% CO2 till 0,4%. CFD:n  för  modellen  uppskattar att  detta  händer  vid  250  sekunder,  där  den termodynamiska modellen förutspår utbytestiden till cirka 200 sekunder. Denna studie är ett stort första steg för att förstå ugnens dynamik.

2021. , s. 26
##### Serie
TRITA-ITM-EX ; 2021:284
##### Nyckelord [en]
Furnace, CFD, ANSYS, Thermodynamic model, Exchange time
##### Nyckelord [sv]
Ugn, CFD, ANSYS, Termodynamisk model, Utbytestid
##### Nationell ämneskategori
Annan materialteknik
##### Identifikatorer
OAI: oai:DiVA.org:kth-308439DiVA, id: diva2:1635469
##### Externt samarbete
Westinghouse Electric Sweden
##### Ämne / kurs
Material och processdesign
##### Utbildningsprogram
Civilingenjörsexamen - Materialdesign

#### Open Access i DiVA

##### Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 657 kBChecksumma SHA-512
2e603df408c010de089094a495b214ee14a05cb6feb7d3323696253b266461db4d7630a8ccba30354f0e1d0726ce6f51e0577936eafe0c71e81d983ec4319317
Typ fulltextMimetyp application/pdf
##### Av organisationen
Materialvetenskap
##### I ämnet
Annan materialteknik

#### Sök vidare utanför DiVA

Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.
urn-nbn

#### Altmetricpoäng

urn-nbn
Totalt: 255 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annat format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annat språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf