kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sequence Adaptation via Reinforcement Learning in Recommender Systems
KTH. Hive Streaming AB, Stockholm, Sweden..ORCID-id: 0000-0002-1135-8863
Univ Thessaly, Volos, Greece..
2021 (Engelska)Ingår i: 15Th ACM Conference On Recommender Systems (RECSYS 2021), Association for Computing Machinery (ACM) , 2021, s. 714-718Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Accounting for the fact that users have different sequential patterns, the main drawback of state-of-the-art recommendation strategies is that a fixed sequence length of user-item interactions is required as input to train the models. This might limit the recommendation accuracy, as in practice users follow different trends on the sequential recommendations. Hence, baseline strategies might ignore important sequential interactions or add noise to the models with redundant interactions, depending on the variety of users' sequential behaviours. To overcome this problem, in this study we propose the SAR model, which not only learns the sequential patterns but also adjusts the sequence length of user-item interactions in a personalized manner. We first design an actor-critic framework, where the RL agent tries to compute the optimal sequence length as an action, given the user's state representation at a certain time step. In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network, while at the same time we adapt the sequence length with the actor network in a personalized manner. Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches. Finally, we make our implementation publicly available at https://github.com/stefanosantaris/sar.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM) , 2021. s. 714-718
Nyckelord [en]
sequential recommendation, reinforcement learning, adaptive learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-309303DOI: 10.1145/3460231.3478864ISI: 000744461300097Scopus ID: 2-s2.0-85115618613OAI: oai:DiVA.org:kth-309303DiVA, id: diva2:1641574
Konferens
15th ACM Conference on Recommender Systems (RECSYS), SEP 27-OCT 01, 2021, Amsterdam, NETHERLANDS
Anmärkning

QC 20220302

Part of proceedings ISBN: 978-1-4503-8458-2

Tillgänglig från: 2022-03-02 Skapad: 2022-03-02 Senast uppdaterad: 2022-06-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Antaris, Stefanos

Sök vidare i DiVA

Av författaren/redaktören
Antaris, Stefanos
Av organisationen
KTH
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 59 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf