kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robotic grasping training using deep reinforcement learning with policy guidance mechanism
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China..
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China..
Beijing Inst Elect Syst Engn, State Key Lab Intelligent Mfg Syst Technol, Beijing 100854, Peoples R China..
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China..
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021, ASME International , 2021Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

For the past few years, training robots to enable them to learn various manipulative skills using deep reinforcement learning (DRL) has arisen wide attention. However, large search space, low sample quality, and difficulties in network convergence pose great challenges to robot training. This paper deals with assembly-oriented robot grasping training and proposes a DRL algorithm with a new mechanism, namely, policy guidance mechanism (PGM). PGM can effectively transform useless or low-quality samples to useful or high-quality ones. Based on the improved Deep Q Network algorithm, an end-to-end policy model that takes images as input and outputs actions is established. Through continuous interactions with the environment, robots are able to learn how to optimally grasp objects according to the location of maximum Q value. A number of experiments for different scenarios using simulations and physical robots are conducted. Results indicate that the proposed DRL algorithm with PGM is effective in increasing the success rate of robot grasping, and moreover, is robust to changes of environment and objects. Copyright 

Ort, förlag, år, upplaga, sidor
ASME International , 2021.
Nyckelord [en]
DRL, Industrial robot training, PGM, Educational robots, Image enhancement, Manufacture, Reinforcement learning, Robot learning, Robotics, Robots, Continuous interactions, Input and outputs, Network algorithms, Physical robots, Policy guidance, Robot grasping, Robot training, Robotic grasping, Deep learning
Nationell ämneskategori
Robotik och automation Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-311083DOI: 10.1115/MSEC2021-63974ISI: 000881640800049Scopus ID: 2-s2.0-85112507406OAI: oai:DiVA.org:kth-311083DiVA, id: diva2:1652453
Konferens
ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021, 21 June 2021 through 25 June 2021
Anmärkning

Part of proceedings: ISBN 978-0-7918-8507-9

QC 20220419

Tillgänglig från: 2022-04-19 Skapad: 2022-04-19 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Wang, Lihui

Sök vidare i DiVA

Av författaren/redaktören
Wang, Lihui
Av organisationen
Hållbara produktionssystem
Robotik och automationDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 58 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf