kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Safe Reinforcement Learning Architecture for Antenna Tilt Optimisation
LM Ericsson, Network Management Res Lab, Athlone, Ireland..
LM Ericsson, Network Management Res Lab, Athlone, Ireland..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. Ericsson Res, Stockholm, Sweden.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: 2021 Ieee 32Nd Annual International Symposium On Personal, Indoor And Mobile Radio Communications (PIMRC), Institute of Electrical and Electronics Engineers (IEEE) , 2021Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Safe interaction with the environment is one of the most challenging aspects of Reinforcement Learning (RL) when applied to real-world problems. This is particularly important when unsafe actions have a high or irreversible negative impact on the environment. In the context of network management operations, Remote Electrical Tilt (RET) optimisation is a safety-critical application in which exploratory modifications of antenna tilt angles of base stations can cause significant performance degradation in the network. In this paper, we propose a modular Safe Reinforcement Learning (SRL) architecture which is then used to address the RET optimisation in cellular networks. In this approach, a safety shield continuously benchmarks the performance of RL agents against safe baselines, and determines safe antenna tilt updates to be performed on the network. Our results demonstrate improved performance of the SRL agent over the baseline while ensuring the safety of the performed actions.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2021.
Nyckelord [en]
Safe Reinforcement Learning, Mobile Networks, RET Optimisation
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:kth:diva-312673DOI: 10.1109/PIMRC50174.2021.9569387ISI: 000782471000189Scopus ID: 2-s2.0-85118469190OAI: oai:DiVA.org:kth-312673DiVA, id: diva2:1659605
Konferens
32nd IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC), SEP 13-16, 2021, ELECTR NETWORK
Anmärkning

QC 20220520

Part of proceedings ISBN 978-1-7281-7586-7

Tillgänglig från: 2022-05-20 Skapad: 2022-05-20 Senast uppdaterad: 2022-06-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Vannella, FilippoIakovidis, Grigorios

Sök vidare i DiVA

Av författaren/redaktören
Vannella, FilippoIakovidis, Grigorios
Av organisationen
ReglerteknikKTH
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 70 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf