kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection of Spoofing Attacks in Aeronautical Ad-hoc Networks Using Deep Autoencoders
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: IEEE Transactions on Information Forensics and Security, ISSN 1556-6013, E-ISSN 1556-6021, Vol. 17, s. 1010-1023Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider an aeronautical ad-hoc network relying on aeroplanes operating in the presence of a spoofer. The aggregated signal received by the terrestrial base station is considered as 'clean' or 'normal', if the legitimate aeroplanes transmit their signals and there is no spoofing attack. By contrast, the received signal is considered as 'spurious' or 'abnormal' in the face of a spoofing signal. An autoencoder (AE) is trained to learn the characteristics/features from a training dataset, which contains only normal samples associated with no spoofing attacks. The AE takes original samples as its input samples and reconstructs them at its output. Based on the trained AE, we define the detection thresholds of our spoofing discovery algorithm. To be more specific, contrasting the output of the AE against its input will provide us with a measure of geometric waveform similarity/dissimilarity in terms of the peaks of curves. To quantify the similarity between unknown testing samples and the given training samples (including normal samples), we first propose a so-called deviation-based algorithm. Furthermore, we estimate the angle of arrival (AoA) from each legitimate aeroplane and propose a so-called AoA-based algorithm. Then based on a sophisticated amalgamation of these two algorithms, we form our final detection algorithm for distinguishing the spurious abnormal samples from normal samples under a strict testing condition. In conclusion, our numerical results show that the AE improves the trade-off between the correct spoofing detection rate and the false alarm rate as long as the detection thresholds are carefully selected. 

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 17, s. 1010-1023
Nyckelord [en]
AANET, autoencoder, deep learning, PHY authentication, spoofing detection
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:kth:diva-312598DOI: 10.1109/TIFS.2022.3155970ISI: 000769991900012Scopus ID: 2-s2.0-85125715457OAI: oai:DiVA.org:kth-312598DiVA, id: diva2:1660759
Anmärkning

QC 20220531

Tillgänglig från: 2022-05-24 Skapad: 2022-05-24 Senast uppdaterad: 2022-06-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ottersten, Björn

Sök vidare i DiVA

Av författaren/redaktören
Ottersten, Björn
I samma tidskrift
IEEE Transactions on Information Forensics and Security
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf