kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Pediatric Brain Tumor Image With Mass Effect
KTH, Skolan för kemi, bioteknologi och hälsa (CBH). (Division of biomedical imaging)
2022 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Syntes av pediatrisk hjärntumörbild med masseffekt (Svenska)
Abstract [en]

During the last few years, deep learning-based techniques have made much progress in the medical image processing field, such as segmentation and registration. The main characteristic of these methods is the large demand of medical images to do model training. However, the acquisition of these data is often difficult, due to the high expense and ethical issues. As a consequence, the lack of data may lead to poor performance and overfitting. To tackle this problem, we propose a data augmentation algorithm in this paper to inpaint the tumor on healthy pediatric brain MRI images to simulate pathological images. Since the growth of tumor may cause deformation and edema of the surrounding tissues which is called the 'mass effect', a probabilistic UNet is applied to mimic this deformation field. Then, instead of directly adding the tumor to the image, the GAN-based method is applied to transfer the mask to the image and make it more plausible, both visually and anatomically. Meanwhile, the annotations of the different brain tissues are also obtained by employing the deformation field to the original labels. Finally, the synthesized image together with the real dataset is trained to do the tumor segmentation task, and the results indicate a statistical improvement in accuracy.

Ort, förlag, år, upplaga, sidor
2022. , s. 62
Serie
TRITA-CBH-GRU ; 2022:112
Nyckelord [en]
Deep learning, Medical Imaging, Data Augmentation, Children Brain Tumor, Mass effect
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-316260OAI: oai:DiVA.org:kth-316260DiVA, id: diva2:1686799
Ämne / kurs
Medicinsk teknik
Utbildningsprogram
Teknologie masterexamen - Medicinsk teknik
Handledare
Examinatorer
Tillgänglig från: 2022-08-19 Skapad: 2022-08-11 Senast uppdaterad: 2022-08-19Bibliografiskt granskad

Open Access i DiVA

fulltext(13757 kB)545 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 13757 kBChecksumma SHA-512
05ca7948e4ae6c4098bb38b8c00713aff9783927d0edba01b594126936619471bbde2100482564850cf1f41b48a52596c70ca9cfe81940cd9334d82c53410164
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för kemi, bioteknologi och hälsa (CBH)
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 545 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 326 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf