kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Extrapolation of polynomial nets and their generalization guarantees
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2022 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Polynomial neural networks (NNs-Hp) have recently demonstrated high expressivity and efficiency across several tasks. However, a theoretical explanation toward such success is still unclear, especially when compared to the classical neural networks. Neural tangent kernel (NTK) is a powerful tool to analyze the training dynamics of neural networks and their generalization bounds. The study on NTK has been devoted to typical neural network architectures, but is incomplete for NNs-Hp. In this work, we derive the finite-width NTK formulation for NNs-Hp, and prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK. Based on our results, we elucidate the difference of NNs-Hp over standard neural networks with respect to extrapolation and spectral bias. Our two key insights are that when compared to standard neural networks, a) NNs-Hp are able to fit more complicated functions in the extrapolation region; and b) NNs-Hp admit a slower eigenvalue decay of the respective NTK. Our empirical results provide a good justification for a deeper understanding of NNs-Hp

Abstract [sv]

Polynomiska neurala nätverk (NNs-Hp) har nyligen visat hög uttrycksförmåga och effektivitet över flera uppgifter. En teoretisk förklaring till sådan framgång är dock fortfarande oklar, särskilt jämfört med de klassiska neurala nätverken. Neurala tangentkärnor (NTK) är ett kraftfullt verktyg för att analysera träningsdynamiken i neurala nätverk och deras generaliseringsgränser. Studien om NTK har ägnats åt typiska neurala nätverksarkitekturer, men är ofullständig för NNs-Hp. I detta arbete härleder vi NTK-formuleringen med ändlig bredd för NNs-Hp och bevisar deras likvärdighet med kärnregressionsprediktorn med den associerade NTK, vilket utökar tillämpningsomfånget för NTK. Baserat på våra resultat belyser vi skillnaden mellan NNs-Hp jämfört med standardneurala nätverk med avseende på extrapolering och spektral bias. Våra två viktiga insikter är att jämfört med vanliga neurala nätverk, a) NNs-Hp kan passa mer komplicerade funktioner i extrapolationsregionen; och b) NNs-Hp medger en långsammare egenvärdesavklingning av respektive NTK. Våra empiriska resultat ger en bra motivering för en djupare förståelse av NNs-Hp.

Ort, förlag, år, upplaga, sidor
2022. , s. 35
Serie
TRITA-EECS-EX ; 2022:229
Nyckelord [en]
Polynomial neural networks, Neural tangent kernel, Extrapolation
Nyckelord [sv]
Polynomial neural networks, Neural tangent kernel, Extrapolation
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-318819OAI: oai:DiVA.org:kth-318819DiVA, id: diva2:1698082
Externt samarbete
Swiss Federal Institute of Technology Lausanne
Ämne / kurs
Maskinteknik
Utbildningsprogram
Teknologie masterexamen - Maskininlärning
Handledare
Examinatorer
Tillgänglig från: 2022-09-23 Skapad: 2022-09-22 Senast uppdaterad: 2022-09-23Bibliografiskt granskad

Open Access i DiVA

fulltext(2704 kB)251 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2704 kBChecksumma SHA-512
e67462f00c08374ea6317fe5a80cbf8c67279feb965b3b1f5471cc9ec2cfe3328ea2fc0cab491ea63670edd2bcdc0230aa285728f8e812761b16ab90f79af0a4
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för elektroteknik och datavetenskap (EECS)
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 251 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 402 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf