kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Knowledge Base Question Answering System for Cyber Threat Knowledge Acquisition
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
University of California, Berkeley, United States.
Virginia Tech, United States.
2022 (Engelska)Ingår i: 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 3158-3161Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Open-source cyber threat intelligence (OSCTI) provides a form of evidence-based knowledge about cyber threats, enabling businesses to gain visibility into the fast-evolving threat landscape. Despite the pressing need for high-fidelity threat knowledge, existing cyber threat knowledge acquisition systems have primarily focused on providing low-level, isolated indicators. These systems have ignored the rich higher-level threat knowledge entities and their relationships presented in OSCTI reports, and do not provide a flexible and intuitive way for threat analysts to acquire the desired knowledge. To bridge the gap, we propose THREATQA, a system that facilitates cyber threat knowledge acquisition via knowledge base question answering. Particularly, THREATQA uses a combination of AI-based techniques to (1) automatically harvest comprehensive knowledge about trending threats from massive OSCTI reports from various sources and construct a large threat knowledge base, and (2) intelligently respond to an input natural language threat knowledge acquisition question by fetching the answer from the threat knowledge base via question answering.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2022. s. 3158-3161
Serie
IEEE International Conference on Data Engineering, ISSN 1084-4627
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-321012DOI: 10.1109/ICDE53745.2022.00287ISI: 000855078403022Scopus ID: 2-s2.0-85136370670OAI: oai:DiVA.org:kth-321012DiVA, id: diva2:1708441
Konferens
38th IEEE International Conference on Data Engineering (ICDE), MAY 09-11, 2022, ELECTR NETWORK
Anmärkning

Part of proceedings: ISBN 978-1-6654-0883-7

QC 20221104

Tillgänglig från: 2022-11-04 Skapad: 2022-11-04 Senast uppdaterad: 2022-11-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ji, Zhengjie

Sök vidare i DiVA

Av författaren/redaktören
Ji, Zhengjie
Av organisationen
Robotik, perception och lärande, RPL
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 44 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf