kth.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Navigating the Semantic Horizon using Relative Neighborhood Graphs
2015 (Engelska)Ingår i: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics (ACL) , 2015Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper introduces a novel way to navigate neighborhoods in distributional semantic models. The approach is based on relative neighborhood graphs, which uncover the topological structure of local neighborhoods in semantic space. This has the potential to overcome both the problem with selecting a proper k in k-NN search, and the problem that a ranked list of neighbors may conflate several different senses. We provide both qualitative and quantitative results that support the viability of the proposed method.

Ort, förlag, år, upplaga, sidor
Association for Computational Linguistics (ACL) , 2015.
Nationell ämneskategori
Språkbehandling och datorlingvistik
Identifikatorer
URN: urn:nbn:se:kth:diva-322091DOI: 10.18653/v1/d15-1292OAI: oai:DiVA.org:kth-322091DiVA, id: diva2:1715219
Anmärkning

QC 20221202

Tillgänglig från: 2022-12-01 Skapad: 2022-12-01 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Ingår i avhandling
1. Quantifying Meaning
Öppna denna publikation i ny flik eller fönster >>Quantifying Meaning
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [sv]

Distributionella semantikmodeller är en klass av maskininlärningsmodeller med syfte att konstruera representationer som fångar semantik, i.e. mening, av objekt som bär mening på ett datadrivet sätt. Denna avhandling är särskilt inriktad på konstruktion av semantisk representation av ord, en strävan som har en lång historia inom datalingvistik och som sett dramatiska utvecklingar under de senaste åren.

Det primära forskningsmålet med denna avhandling är att utforska gränserna och tillämpningarna av distributionella semantikmodeller av ord, i.e. word embeddings. I synnerhet utforskar den relationen mellan modell- och embeddingsemantik, det vill säga hur modelldesign påverkar vad ord-embeddings innehåller, hur man resonerar om ord-embeddings, och hur egenskaperna hos modellen kan utnyttjas för att extrahera ny information från embeddings. Konkret introducerar vi topologiskt medvetna grannskapsfrågor som berikar den information som erhålls från grannskap extraherade från distributionella sematikmodeller, villkorade likhetsfrågor (och modeller som möjliggör dem), konceptutvinning från distributionella semantikmodeller, tillämpningar av embbeddningmodeller inom statsvetenskap, samt en grundlig utvärdering av en bred mängd av distributionella semantikmodeller.

Abstract [en]

Distributional semantic models are a class of machine learning models with the aim of constructing representations that capture the semantics, i.e. meaning, of objects that carry meaning in a data-driven fashion. This thesis is particularly concerned with the construction of semantic representations of words, an endeavour that has a long history in computational linguistics, and that has seen dramatic developments in recent years.

The primary research objective of this thesis is to explore the limits and applications of distributional semantic models of words, i.e. word embeddings. In particular, it explores the relation between model and embedding semantics, i.e. how model design influences what our embeddings encode, how to reason about embeddings, and how properties of the model can be exploited to extract novel information from embeddings. Concretely, we introduce topologically aware neighborhood queries that enrich the information gained from neighborhood queries on distributional semantic models, conditioned similarity queries (and models enabling them), concept extraction from distributional semantic models, applications of embedding models in the realm of political science, as well as a thorough evaluation of a broad range of distributional semantic models. 

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2023. s. 45
Serie
TRITA-EECS-AVL ; 2023:2
Nationell ämneskategori
Språkbehandling och datorlingvistik
Forskningsämne
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-322262 (URN)978-91-8040-444-0 (ISBN)
Disputation
2023-01-17, Zoom: https://kth-se.zoom.us/j/66943302856, F3, Lindstedtsvägen 26, Stockholm, 09:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20221207

Tillgänglig från: 2022-12-08 Skapad: 2022-12-07 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Cuba Gyllensten, Amaru

Sök vidare i DiVA

Av författaren/redaktören
Cuba Gyllensten, Amaru
Språkbehandling och datorlingvistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 31 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf