kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Management of Smart Homes with Electric Vehicles Using Deep Reinforcement Learning
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.ORCID-id: 0000-0002-2793-9048
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.ORCID-id: 0000-0003-3014-5609
2022 (Engelska)Ingår i: 2022 24th european conference on power electronics and applications (EPE'22 ECCE europe), IEEE, 2022Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The proliferation of electric vehicles (EVs) has resulted in new charging infrastructure at all levels, including domestically. These new domestic EVs can potentially provide vehicle to home (V2H) services where EVs are used as energy storage systems (ESSs) for the home when they are not in use. Energy management systems (EMSs) can control these EVs to minimize the electricity cost to the owner but must satisfy constraints. Uncertainty in EV availability and the microgrid environment is also a challenge and can be addressed through real-time operation. Hence this paper formulates the EV charge/discharge scheduling problem as a Markov Decision Process (MDP). A safe implementation of Proximal Policy Optimization (PPO) is proposed for real-time optimization and compared to a day-ahead Mixed Integer Linear Programming (MILP) benchmark. The resulting PPO agent is able to minimize RA and SD costs for a typical EV user 3% better than the MILP solution. It obtains a 39% higher electricity cost than MILP, but unlike MILP does not require accurate forecasting data and operates in real-time.

Ort, förlag, år, upplaga, sidor
IEEE, 2022.
Serie
European Conference on Power Electronics and Applications, ISSN 2325-0313
Nyckelord [en]
Energy Management System (EMS), Microgrid, Electric Vehicle, Energy storage, Deep learning, Safety
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-323920ISI: 000886231600108Scopus ID: 2-s2.0-85141585101OAI: oai:DiVA.org:kth-323920DiVA, id: diva2:1739608
Konferens
24th European Conference on Power Electronics and Applications (EPE ECCE Europe), SEP 05-09, 2022, Hanover, GERMANY
Anmärkning

QC 20230227

Tillgänglig från: 2023-02-27 Skapad: 2023-02-27 Senast uppdaterad: 2023-06-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Weiss, XavierXu, QianwenNordström, Lars

Sök vidare i DiVA

Av författaren/redaktören
Weiss, XavierXu, QianwenNordström, Lars
Av organisationen
Elkraftteknik
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 108 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf