kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A new machine learning method for cancer mutation analysis
Islamic Azad Univ, Dept Math, Qazvin Branch, Qazvin, Iran..ORCID-id: 0000-0002-8969-2706
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Beräkningsvetenskap och beräkningsteknik (CST). KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-2741-0355
2022 (Engelska)Ingår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 18, nr 10, artikel-id e1010332Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that cancer driver genes operate across complex pathways and networks, with mutations often arising in a mutually exclusive pattern. Genes with low-frequency mutations are understudied as cancer-related genes, especially in the context of networks. Here we propose a machine learning method to study the functionality of mutually exclusive genes in the networks derived from mutation associations, gene-gene interactions, and graph clustering. These networks have indicated critical biological components in the essential pathways, especially those mutated at low frequency. Studying the network and not just the impact of a single gene significantly increases the statistical power of clinical analysis. The proposed method identified important driver genes with different frequencies. We studied the function and the associated pathways in which the candidate driver genes participate. By introducing lower-frequency genes, we recognized less studied cancer-related pathways. We also proposed a novel clustering method to specify driver modules. We evaluated each driver module with different criteria, including the terms of biological processes and the number of simultaneous mutations in each cancer. Materials and implementations are available at: https://github.com/MahnazHabibi/MutationAnalysis. Author summary It can be challenging to find mutations that cause cancer. One of the most trustworthy characteristics for identifying cancer-causing mutations is the recurrence of a mutation in patients. However, some uncommon and low-frequency mutations should also be explored as cancer-related mutations, particularly in the setting of networks. In this study, we suggested a unique approach to discover prospective driver genes and investigate the functionality of mutually exclusive genes in networks formed from mutation connections and gene-gene interactions. These networks have identified critical biological elements in the vital pathways, notably in those that experience infrequent mutations. In the first step, we established six enlightening topological features for each gene acting as a network node. For each gene, we computed the score for our predefined features. Then, we suggested the high-scoring genes with significant connections to cancer as potential targets for further research. In the second step, we constructed a network based on the relationships between the high-score genes to find the cancer-related modules. We used what we had learned in the first step about how the high-score potential driver genes interact physically, biologically, and in terms of how they work to build this network.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS) , 2022. Vol. 18, nr 10, artikel-id e1010332
Nationell ämneskategori
Medicinsk genetik och genomik
Identifikatorer
URN: urn:nbn:se:kth:diva-324533DOI: 10.1371/journal.pcbi.1010332ISI: 000924885500001PubMedID: 36251702Scopus ID: 2-s2.0-85140933352OAI: oai:DiVA.org:kth-324533DiVA, id: diva2:1741775
Anmärkning

QC 20230320

Tillgänglig från: 2023-03-07 Skapad: 2023-03-07 Senast uppdaterad: 2025-02-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Taheri, Golnaz

Sök vidare i DiVA

Av författaren/redaktören
Habibi, MahnazTaheri, Golnaz
Av organisationen
Beräkningsvetenskap och beräkningsteknik (CST)Science for Life Laboratory, SciLifeLab
I samma tidskrift
PloS Computational Biology
Medicinsk genetik och genomik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 38 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf