kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the Streamline Plausibility Through Convex Optimization for Microstructure Informed Tractography(COMMIT) with Deep Learning
KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Bedömning av strömlinjeformligheten genom konvex optimering för mikrostrukturinformerad traktografi (COMMIT) med djupinlärning (Svenska)
Abstract [en]

Tractography is widely used in the brain connectivity study from diffusion magnetic resonance imaging data. However, lack of ground truth and plenty of anatomically implausible streamlines in the tractograms have caused challenges and concerns in the use of tractograms such as brain connectivity study. Tractogram filtering methods have been developed to remove the faulty connections. In this study, we focus on one of these filtering methods, Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT), which tries to find a set of streamlines that best reconstruct the diffusion magnetic resonance imaging data with global optimization approach. There are biases with this method when assessing individual streamlines. So a method named randomized COMMIT(rCOMMIT) is proposed to obtain multiple assessments for each streamline. The acceptance rate from this method is introduced to the streamlines and divides them into three groups, which are regarded as pseudo ground truth from rCOMMIT. Therefore, the neural networks are able to train on the pseudo ground truth on classification tasks. The trained classifiers distinguish the obtained groups of plausible and implausible streamlines with accuracy around 77%. Following the same methodology, the results from rCOMMIT and randomized SIFT are compared. The intersections between two methods are analyzed with neural networks as well, which achieve accuracy around 87% in binary task between plausible and implausible streamlines. 

Ort, förlag, år, upplaga, sidor
2023. , s. 49
Serie
TRITA-CBH-GRU ; 023:072
Nyckelord [en]
Tractography, dMRI, Filtering Methods, Deep Learning, Classification
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-326496OAI: oai:DiVA.org:kth-326496DiVA, id: diva2:1754277
Ämne / kurs
Medicinsk teknik
Utbildningsprogram
Teknologie masterexamen - Medicinsk teknik
Handledare
Examinatorer
Tillgänglig från: 2023-05-12 Skapad: 2023-05-03 Senast uppdaterad: 2023-05-12Bibliografiskt granskad

Open Access i DiVA

fulltext(2569 kB)252 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 2569 kBChecksumma SHA-512
af776792d7b09bde8b4b40aa4235b13536a593e5ba4951931a0d692871329d49579b8fde7b1cccb4aa909abb7a219ccbf73d07c7cf1b7089b6768617ff867460
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för kemi, bioteknologi och hälsa (CBH)
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 253 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 804 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf