kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian analysis of Ecological Momentary Assessment (EMA) data collected in adults before and after hearing rehabilitation
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.ORCID-id: 0000-0001-7957-5103
Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, Oldenburg, Germany.
Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, Oldenburg, Germany.
KTH, Skolan för elektroteknik och datavetenskap (EECS).
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Frontiers in Digital Health, E-ISSN 2673-253X, Vol. 5, artikel-id 1100705Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a new Bayesian method for analyzing Ecological Momentary Assessment (EMA) data and applies this method in a re-analysis of data from a previous EMA study. The analysis method has been implemented as a freely available Python package EmaCalc, RRID:SCR 022943. The analysis model can use EMA input data including nominal categories in one or more situation dimensions, and ordinal ratings of several perceptual attributes. The analysis uses a variant of ordinal regression to estimate the statistical relation between these variables. The Bayesian method has no requirements related to the number of participants or the number of assessments by each participant. Instead, the method automatically includes measures of the statistical credibility of all analysis results, for the given amount of data. For the previously collected EMA data, the analysis results demonstrate how the new tool can handle heavily skewed, scarce, and clustered data that were collected on ordinal scales, and present results on interval scales. The new method revealed results for the population mean that were similar to those obtained in the previous analysis by an advanced regression model. The Bayesian approach automatically estimated the inter-individual variability in the population, based on the study sample, and could show some statistically credible intervention results also for an unseen random individual in the population. Such results may be interesting, for example, if the EMA methodology is used by a hearing-aid manufacturer in a study to predict the success of a new signal-processing method among future potential customers.

Ort, förlag, år, upplaga, sidor
Frontiers Media SA , 2023. Vol. 5, artikel-id 1100705
Nyckelord [en]
ambulatory assessment, Bayesian inference, Ecological Momentary Assessment, EMA, experience sampling, nominal data, ordinal data
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:kth:diva-331101DOI: 10.3389/fdgth.2023.1100705ISI: 001030200300001PubMedID: 36874366Scopus ID: 2-s2.0-85149934062OAI: oai:DiVA.org:kth-331101DiVA, id: diva2:1780225
Anmärkning

QC 20230705

Tillgänglig från: 2023-07-05 Skapad: 2023-07-05 Senast uppdaterad: 2024-01-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Leijon, ArneTaghia, Jalil

Sök vidare i DiVA

Av författaren/redaktören
Leijon, ArneTaghia, Jalil
Av organisationen
Tal, musik och hörsel, TMHSkolan för elektroteknik och datavetenskap (EECS)
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 35 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf