kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PV self-consumption prediction methods using supervised machine learning
KTH.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.ORCID-id: 0000-0002-2603-7595
Antal upphovsmän: 22022 (Engelska)Ingår i: 2022 BuildSim Nordic, BSN 2022, EDP Sciences , 2022, artikel-id 02003Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The increased prevalence of photovoltaic (PV) self-consumption policies across Europe and the world place an increased importance on accurate predictions for life-cycle costing during the planning phase. This study presents several machine learning and regression models for predicting self-consumption, trained on a variety of datasets from Sweden. The results show that advanced ML models have an improved performance over simpler regressions, where the highest performing model, Random Forest, has a mean average error of 1.5 percentage points and an R2 of 0.977. Training models using widely available typical meteorological year (TMY) climate data is also shown to introduce small, acceptable errors when tested against spatially and temporally matched climate and load data. The ability to train the ML models with TMY climate data makes their adoption easier and builds on previous work by demonstrating the robustness of the methodology as a self-consumption prediction tool. The low error and high R2 are a notable improvement over previous estimation models and the minimal input data requirements make them easy to adopt and apply in a wide array of applications.

Ort, förlag, år, upplaga, sidor
EDP Sciences , 2022. artikel-id 02003
Nationell ämneskategori
Energisystem
Identifikatorer
URN: urn:nbn:se:kth:diva-333443DOI: 10.1051/e3sconf/202236202003Scopus ID: 2-s2.0-85146889141OAI: oai:DiVA.org:kth-333443DiVA, id: diva2:1785271
Konferens
2022 BuildSim Nordic, BSN 2022, Copenhagen, Denmark, Aug 22 2022 - Aug 23 2022
Anmärkning

QC 20230802

Tillgänglig från: 2023-08-02 Skapad: 2023-08-02 Senast uppdaterad: 2023-08-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Tóth, MartosSommerfeldt, Nelson

Sök vidare i DiVA

Av författaren/redaktören
Tóth, MartosSommerfeldt, Nelson
Av organisationen
KTHTillämpad termodynamik och kylteknik
Energisystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf