kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing an AI-Assisted Low-Resource Spoken Language Learning App for Children
Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland..
Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland..
Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland..
Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland..
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 11, s. 86025-86037Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Computer-assisted Language Learning (CALL) is a rapidly developing area accelerated by advancements in the field of AI. A well-designed and reliable CALL system allows students to practice language skills, like pronunciation, any time outside of the classroom. Furthermore, gamification via mobile applications has shown encouraging results on learning outcomes and motivates young users to practice more and perceive language learning as a positive experience. In this work, we adapt the latest speech recognition technology to be a part of an online pronunciation training system for small children. As part of our gamified mobile application, our models will assess the pronunciation quality of young Swedish children diagnosed with Speech Sound Disorder, and participating in speech therapy. Additionally, the models provide feedback to young non-native children learning to pronounce Swedish and Finnish words. Our experiments revealed that these new models fit into an online game as they function as speech recognizers and pronunciation evaluators simultaneously. To make our systems more trustworthy and explainable, we investigated whether the combination of modern input attribution algorithms and time-aligned transcripts can explain the decisions made by the models, give us insights into how the models work and provide a tool to develop more reliable solutions.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2023. Vol. 11, s. 86025-86037
Nyckelord [en]
ASR, children's speech, L2 speech, speech rating, SSD, wav2vec2
Nationell ämneskategori
Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:kth:diva-335200DOI: 10.1109/ACCESS.2023.3304274ISI: 001051656600001Scopus ID: 2-s2.0-85167833032OAI: oai:DiVA.org:kth-335200DiVA, id: diva2:1799978
Anmärkning

QC 20230925

Tillgänglig från: 2023-09-25 Skapad: 2023-09-25 Senast uppdaterad: 2023-09-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Salvi, Giampiero

Sök vidare i DiVA

Av författaren/redaktören
Salvi, Giampiero
Av organisationen
Tal, musik och hörsel, TMH
I samma tidskrift
IEEE Access
Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf