kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Reinforcement Learning to Correct Soft Errors of Deep Neural Networks
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)Alternativ titel
Använda Förstärkningsinlärning för att Upptäcka och Mildra Mjuka Fel i Djupa Neurala Nätverk (Svenska)
Abstract [en]

Deep Neural Networks (DNNs) are becoming increasingly important in various aspects of human life, particularly in safety-critical areas such as autonomous driving and aerospace systems. However, soft errors including bit-flips can significantly impact the performance of these systems, leading to serious consequences. To ensure the reliability of DNNs, it is essential to guarantee their performances. Many solutions have been proposed to enhance the trustworthiness of DNNs, including traditional methods like error correcting code (ECC) that can mitigate and detect soft errors but come at a high cost of redundancy. This thesis proposes a new method of correcting soft errors in DNNs using Deep Reinforcement Learning (DRL) and Transfer Learning (TL). DRL agent can learn the knowledge of identifying the layer-wise critical weights of a DNN. To accelerate the training time, TL is used to apply this knowledge to train other layers. The primary objective of this method is to ensure acceptable performance of a DNN by mitigating the impact of errors on it while maintaining low redundancy. As a case study, we tested the proposed method approach on a multilayer perception (MLP) and ResNet-18, and our results show that our method can save around 25% redundancy compared to the baseline method ECC while achieving the same level of performance. With the same redundancy, our approach can boost system performance by up to twice that of conventional methods. By implementing TL, the training time of MLP is shortened to around 81.11%, and that of ResNet-18 is shortened to around 57.75%.

Abstract [sv]

DNNs blir allt viktigare i olika aspekter av mänskligt liv, särskilt inom säkerhetskritiska områden som autonom körning och flygsystem. Mjuka fel inklusive bit-flip kan dock påverka prestandan hos dessa system avsevärt, vilket leder till allvarliga konsekvenser. För att säkerställa tillförlitligheten hos DNNs är det viktigt att garantera deras prestanda. Många lösningar har föreslagits för att förbättra tillförlitligheten för DNNs, inklusive traditionella metoder som ECC som kan mildra och upptäcka mjuka fel men som har en hög kostnad för redundans. Denna avhandling föreslår en ny metod för att korrigera mjuka fel i DNN med DRL och TL. DRL-agenten kan lära sig kunskapen om att identifiera de lagermässiga kritiska vikterna för en DNN. För att påskynda träningstiden används TL för att tillämpa denna kunskap för att träna andra lager. Det primära syftet med denna metod är att säkerställa acceptabel prestanda för en DNN genom att mildra inverkan av fel på den samtidigt som låg redundans bibehålls. Som en fallstudie testade vi den föreslagna metodmetoden på en MLP och ResNet-18, och våra resultat visar att vår metod kan spara cirka 25% redundans jämfört med baslinjemetoden ECC samtidigt som vi uppnår samma prestationsnivå. Med samma redundans kan vårt tillvägagångssätt öka systemets prestanda med upp till dubbelt så högt som för konventionella metoder. Genom att implementera TL förkortas träningstiden för MLP till cirka 81.11%, och den för ResNet-18 förkortas till cirka 57.75%.

Ort, förlag, år, upplaga, sidor
2023. , s. 45
Serie
TRITA-EECS-EX ; 2023:713
Nyckelord [en]
DNN, Soft errors, Redundancy, DRL, DQN, Transfer learning, Training time
Nyckelord [sv]
DNN, Mjuka fel, Redundans, DRL, DQN, Överföringsinlärning, Utbildningstid
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-338112OAI: oai:DiVA.org:kth-338112DiVA, id: diva2:1804982
Handledare
Examinatorer
Tillgänglig från: 2023-11-02 Skapad: 2023-10-15 Senast uppdaterad: 2023-11-02Bibliografiskt granskad

Open Access i DiVA

fulltext(15507 kB)655 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 15507 kBChecksumma SHA-512
ad557ecb1b7f28dc65967b637698acbd91abf0f23296859256228e6d7222ab6e709827ecc2be2005eb24bbb3404159f905230203657f5a49e4b42add0b722fa5
Typ fulltextMimetyp application/pdf

Av organisationen
Skolan för elektroteknik och datavetenskap (EECS)
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 655 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 192 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf