kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dewatering of Micro- and Nanofibrillated Cellulose for Membrane Production
RISE Res Inst Sweden, Dept Mat & Surface Design, SE-11428 Stockholm, Sweden.;Digital Cellulose Ctr, S-60233 Norrköping, Sweden..
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
Stora Enso AB, Biomat Innovat Ctr, SE-13154 Nacka, Sweden..
Grp Innovat & R&D, Stora Enso AB, Box 9090, SE-65009 Karlstad, Sweden..
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, nr 46, s. 16428-16441Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cellulose-based membranes have tremendous potential to improve the sustainability and performance of high value applications, such as filters and energy devices, particularly as fluorinated compounds are becoming more regulated. Yet, a deeper understanding of how cellulose films are formed and their structure, in both the wet and dry state, is needed to meet application specific demands and scale-up. We investigated cellulose dewatering using dead-end filtration and the effect of particle size, pressure, temperature, ionic strength, and pH were explored. Dewatering times, filtration cake resistance and compressibility of microfibrillated celluloses (MFCs) and cellulose nanofibrils (CNFs), (and a combination thereof) were measured to understand the role of fibrillation and intermolecular forces during dewatering and forming of membranes. In this fundamental work, dewatering behavior was well described by conventional filtration theory and increasing the pressure from 1 to 4 bar reduced dewatering times by one-half with no significant impact on the mechanical properties. Cake compressibility was found to be directly related to particle size and degree of fibrillation, indicating that finer grades of MFCs and CNFs could be more effectively dewatered at higher pressures. Adjusting pH and ionic strength of cellulose dispersions could similarly reduce dewatering times, yet impacted the wet and dry mechanical properties. This work serves as a basis to better understand the structure-property relationships that develop during dewatering of MFCs and CNFs.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS) , 2023. Vol. 11, nr 46, s. 16428-16441
Nyckelord [en]
dewatering, microfibrillated cellulose, cellulosenanofibrils, membranes, cake resistance
Nationell ämneskategori
Textil-, gummi- och polymermaterial
Identifikatorer
URN: urn:nbn:se:kth:diva-340877DOI: 10.1021/acssuschemeng.3c02871ISI: 001108317800001Scopus ID: 2-s2.0-85178112676OAI: oai:DiVA.org:kth-340877DiVA, id: diva2:1819844
Anmärkning

QC 20231215

Tillgänglig från: 2023-12-15 Skapad: 2023-12-15 Senast uppdaterad: 2023-12-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Suganda, WidiWågberg, Lars

Sök vidare i DiVA

Av författaren/redaktören
Suganda, WidiWågberg, Lars
Av organisationen
Fiber- och polymerteknologiFiberteknologiWallenberg Wood Science Center
I samma tidskrift
ACS Sustainable Chemistry and Engineering
Textil-, gummi- och polymermaterial

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 29 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf