kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting moisture penetration dynamics in paper with machine learning approach
KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Farkostteknik och Solidmekanik, Hållfasthetslära.ORCID-id: 0000-0002-4364-6894
KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Farkostteknik och Solidmekanik, Hållfasthetslära. Department of Mechanical and Production Engineering, Aarhus University, 8200 Aarhus N, Denmark.ORCID-id: 0000-0001-6375-6292
Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria, Inffeldgasse 23; CD Laboratory for Fiber Swelling and Paper Performance, 8010 Graz, Austria.
Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria, Inffeldgasse 23; CD Laboratory for Fiber Swelling and Paper Performance, 8010 Graz, Austria.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 288, s. 112602-, artikel-id 112602Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this work, we predicted the gradient of the deformational moisture dynamics in a sized commercial paper by observing the curl deformation in response to the one-sided water application. The deformational moisture is a part of the applied liquid which ends up in the fibers causing swelling and subsequent mechanical response of the entire fiber network structure. The adapted approach combines traditional experimental procedures, advanced machine learning techniques and continuum modeling to provide insights into the complex phenomenon relevant to ink-jet digital printing in which the sized and coated paper is often used, meaning that not all the applied moisture will reach the fibers. Key material properties including elasticity, plastic parameters, viscoelasticity, creep, moisture dependent behavior, along with hygroexpansion coefficients are identified through extensive testing, providing vital data for subsequent simulation using a continuum model. Two machine learning models, a Feedforward Neural Network (FNN) and a Recurrent Neural Network (RNN), are probed in this study. Both models are trained using exclusively numerically generated moisture profile histories, showcasing the value of such data in contexts where experimental data acquisition is challenging. These two models are subsequently utilized to predict moisture profile history based on curl experimental measurements, with the RNN demonstrating superior accuracy due to its ability to account for temporal dependencies. The predicted moisture profiles are used as inputs for the continuum model to simulate the associated curl response comparing it to the experiment representing “never seen” data. The result of comparison shows highly predictive capability of the RNN. This study melds traditional experimental methods and innovative machine learning techniques, providing a robust technique for predicting moisture gradient dynamics that can be used for both optimizing the ink solution and paper structure to achieve desirable printing quality with lowest curl propensities during printing.

Ort, förlag, år, upplaga, sidor
Elsevier BV , 2024. Vol. 288, s. 112602-, artikel-id 112602
Nyckelord [en]
Curl Deformation, Feedforward Neural Network, Machine Learning, Moisture Penetration Dynamics, Paper Materials, Recurrent Neural Network
Nationell ämneskategori
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-341596DOI: 10.1016/j.ijsolstr.2023.112602ISI: 001139957000001Scopus ID: 2-s2.0-85179476417OAI: oai:DiVA.org:kth-341596DiVA, id: diva2:1822632
Anmärkning

QC 20231227

Tillgänglig från: 2023-12-27 Skapad: 2023-12-27 Senast uppdaterad: 2024-02-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Alzweighi, MossabMansour, RamiKulachenko, Artem

Sök vidare i DiVA

Av författaren/redaktören
Alzweighi, MossabMansour, RamiKulachenko, Artem
Av organisationen
Hållfasthetslära
I samma tidskrift
International Journal of Solids and Structures
Teknisk mekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 131 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf