Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the effect of free-riders in P2P streaming systems
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsnät.
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsnät.ORCID-id: 0000-0002-2764-8099
2008 (Engelska)Ingår i: 2008 4TH INTERNATIONAL TELECOMMUNICATION NETWORKING WORKSHOP ON QOS IN MULTISERVICE IP NETWORKS, 2008, s. 8-13Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Peer-to-peer applications exploit the users willingness to contribute with their upload transmission capacity, achieving this way a scalable system where the available transmission capacity increases with the number of participating users. Since not all the users can offer upload capacity with high bitrate and reliability, it is of interest to see how these non-contributing users can be supported by a peer-to-peer application. In this paper we investigate how free-riders, that is, non-contributing users can be served in a peer-to-peer streaming system. We consider different policies of dealing with free-riders and discuss how performance parameters such as blocking and disconnection of free-riders are influenced by these policies, the overlay structure and system parameters as overlay size and source upload capacity. The results show that while the multiple-tree structure may affect the performance free-riders receive, the utilization of the transmission resources is still comparable to that of an optimized overlay.

Ort, förlag, år, upplaga, sidor
2008. s. 8-13
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:kth:diva-12694DOI: 10.1109/ITNEWS.2008.4488122ISI: 000257132600002Scopus ID: 2-s2.0-50149093031ISBN: 978-1-4244-1844-2 (tryckt)OAI: oai:DiVA.org:kth-12694DiVA, id: diva2:318097
Konferens
4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks Venezia, ITALY, FEB 13-15, 2008
Anmärkning
QC 20100506Tillgänglig från: 2010-05-06 Skapad: 2010-05-06 Senast uppdaterad: 2012-01-30Bibliografiskt granskad
Ingår i avhandling
1. P2P Live Video Streaming
Öppna denna publikation i ny flik eller fönster >>P2P Live Video Streaming
2010 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The ever increasing demand for video content directed the focus of researchfrom traditional server-based schemes to peer-to-peer systems for videodelivery. In such systems, video data is delivered to the users by utilizing theresources of the users themselves, leading to a potentially scalable solution.Users connect to each other, forming a p2p overlay network on top of theInternet and exchange the video segments among themselves. The performanceof a p2p system is characterized by its capability to deliver the videocontent to all peers without errors and with the smallest possible delay. Thisconstitutes a challenge since peers dynamically join and leave the overlay andalso contribute different amounts of resources to the system.The contribution of this thesis lies in two areas. The first area is theperformance evaluation of the most prominent p2p streaming architectures.We study the streaming quality in multiple-tree-based systems. We derivemodels to evaluate the stability of a multiple tree overlay in dynamic scenariosand the efficiency of the data distribution over the multiple trees. Then, westudy the data propagation in mesh-based overlays. We develop a generalframework for the evaluation of forwarding algorithms in such overlays anduse this framework to evaluate the performance of four different algorithms.The second area of the thesis is a study of streaming in heterogeneous p2poverlays. The streaming quality depends on the aggregate resources that peerscontribute to the system: low average contribution leads to low streamingquality. Therefore, maintaining high streaming quality requires mechanismsthat either prohibit non-contributing peers or encourage contribution. In thisthesis we investigate both approaches. For the former, we derive a model tocapture the evolution of available capacity in an overlay and propose simpleadmission control mechanisms to avoid capacity drainage. For the latter, inour last work, we propose a novel incentive mechanism that maximizes thestreaming quality in an overlay by encouraging highly contributing peers tooffer more of their resources.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2010. s. v, 30
Serie
Trita-EE, ISSN 1653-5146 ; 2010:010
Nyckelord
p2p systems, live streaming, mesh-based systems
Nationell ämneskategori
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-12373 (URN)
Presentation
2010-03-22, Q21, Osquldas väg 10, KTH, Stockholm, 15:15 (Engelska)
Opponent
Handledare
Anmärkning
QC 20100506Tillgänglig från: 2010-05-06 Skapad: 2010-04-12 Senast uppdaterad: 2013-09-09Bibliografiskt granskad
2. Live Streaming Performance of Peer-to-Peer Systems
Öppna denna publikation i ny flik eller fönster >>Live Streaming Performance of Peer-to-Peer Systems
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In peer-to-peer (P2P) live streaming systems peers organize themselves in an overlay and contributewith their resources to help diffuse live content to all peers in a timely manner. The performanceof such systems is usually characterized by the delay-loss curve, which quantifies theplayback delay required for achieving a certain streaming quality, expressed as the chunk missingratio at the peers. The streaming quality is determined by the overlay construction algorithm, theforwarding algorithm, the loss process in the underlying network, the number of peers in the overlayand their bandwidth distribution, the willingness of the peers to contribute with their resourcesand the viewing behavior of the peers (churn). The overlay construction and forwarding algorithmsare inherent characteristics of a P2P protocol, while the remaining factors are artifacts of thedeployment of the P2P system over a best-effort network such as the Internet, as well as the factthat peers act as independent agents. The current thesis addresses the problem of evaluating andimproving the performance of P2P streaming protocols based on models of the network and of thepeers' behavior. The first part of the thesis is devoted to the performance evaluation of P2P overlay constructionand forwarding algorithms and offers three contributions. First, we study the efficiency of datadistribution in multiple tree-based overlays employing forward error correction. We deriveanalytical expressions for the average packet possession probability as well as its asymptoticbounds and verify our results through simulations. Second, we evaluate the performance of astreaming system in the presence of free-riders. We define two admission control policies and studythe streaming feasibility using an analytical model and via simulations. Third, we present ananalytic framework for the evaluation of forwarding algorithms in mesh-based systems. We validate itvia simulations and use it to evaluate and to compare four push-based forwarding algorithms in termsof their delay-loss curves. The second part of the thesis investigates potential improvements to the operation of P2P streamingsystems and offers three contributions in that area. First, we study the impact of selfish peerbehavior on streaming quality in overlays where a fraction of peers has limited contribution due tophysical constraints. We show that selfish peer behavior results in suboptimal streaming quality andwe propose an incentive mechanism that increases the streaming quality by using the server uploadcapacity to reward high contributing peers. Second, we study the problem of building network aware P2P streaming overlays, taking into accountrecent measurement results that indicate that the AS-level topology of the Internet is flattening.Through extensive simulations on regular and measured topologies we show that it is possible tocreate better than random overlays relying on information about the underlying topology. Finally, westudy the problem of playout adaptation in P2P streaming systems under churn. We propose andevaluate two algorithms that tune the playback delay of the peers in such a way that the streamingquality of the peers is maintained within predetermined limits. We use simulations to show thecorrectness of the proposed algorithms and the benefits from their use.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2012. s. vii, 43
Serie
Trita-EE, ISSN 1653-5146
Nationell ämneskategori
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-70153 (URN)978-91-7501-241-4 (ISBN)
Disputation
2012-02-09, F3, Lindstedtsvägen 26, Stockholm, 13:15 (Engelska)
Opponent
Handledare
Anmärkning
QC 20120130Tillgänglig från: 2012-01-30 Skapad: 2012-01-30 Senast uppdaterad: 2012-01-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fodor, Viktória

Sök vidare i DiVA

Av författaren/redaktören
Chatzidrossos, IliasFodor, Viktória
Av organisationen
Kommunikationsnät
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 98 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf