Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Motion intention recognition in robot assisted applications
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2965-2953
2008 (Engelska)Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 56, nr 8, s. 692-705Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Acquiring, representing and modelling human skills is one of the key research areas in teleoperation, programming-by-demonstration and human-machine collaborative settings. The problems are challenging mainly because of the lack of a general mathematical model to describe human skills. One of the common approaches is to divide the task that the operator is executing into several subtasks or low-level subsystems in order to provide manageable modelling. In this paper we consider the use of a Layered Hidden Markov Model (LHMM) to model human skills. We evaluate a gesteme classifier that classifies motions into basic action-primitives, or gestemes. The gesteme classifiers are then used in a LHMM to model a teleoperated task. The proposed methodology uses three different HMM models at the gesteme level: one-dimensional HMM, multi-dimensional HMM and multidimensional HMM with Fourier transform. The online and off-line classification performance of these three models is evaluated with respect to the number of gestemes, the influence of the number of training samples, the effect of noise and the effect of the number of observation symbols. We also apply the LHMM to data recorded during the execution of a trajectory tracking task in 2D and 3D with a mobile manipulator in order to provide qualitative as well as quantitative results for the proposed approach. The results indicate that the LHMM is suitable for modelling teleoperative trajectory-tracking tasks and that the difference in classification performance between one and multidimensional HMMs for gesteme classification is small. It can also be seen that the LHMM is robust with respect to misclassifications in the underlying gesteme classifiers.

Ort, förlag, år, upplaga, sidor
2008. Vol. 56, nr 8, s. 692-705
Nyckelord [en]
Layered Hidden Markov Models, human-machine collaboration, motion, intention recognition
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:kth:diva-17769DOI: 10.1016/j.robot.2007.11.005ISI: 000258562600005OAI: oai:DiVA.org:kth-17769DiVA, id: diva2:335814
Anmärkning
QC 20100525 QC 20111214Tillgänglig från: 2010-08-05 Skapad: 2010-08-05 Senast uppdaterad: 2017-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Kragic, Danica

Sök vidare i DiVA

Av författaren/redaktören
Aarno, DanielKragic, Danica
Av organisationen
Datorseende och robotik, CVAPCentrum för Autonoma System, CAS
I samma tidskrift
Robotics and Autonomous Systems
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1342 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf