Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The terrain correction in gravimetric geoid computation-is it needed?
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transporter och samhällsekonomi, Geodesi.
2009 (Engelska)Ingår i: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 176, nr 1, s. 14-18Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is well known among geodesists that the gravitational effect of the topography must be removed (direct topographic effect) prior to geoid computation, for example, by Stokes' formula, and restored afterward (indirect topographic effect). The direct effect is usually decomposed into the effects of the Bouguer shell (-V-B) and the terrain. While the computation of V-B is a simple matter, the detailed consideration of the terrain effect is more difficult. This study emphasizes, that, in principle, the geoid height can be determined by the remove restore technique in considering only V-B and the effect of an arbitrarily small area of the terrain along the radius vector at the computation point, and that the determination of VB requires only the density distribution be known along this radius. The method is justified by the approximation theorems of Runge-Krarup and Keldysh-Lavrentieff. The answer to the headline question is therefore no. A closely related question is how to find a candidate method for the analytical continuation of the external potential. The paper studies whether a Taylor series can take on this role. It is concluded that this series will converge, if the direct effects of the Bouguer potential and the mass of the terrain in a near-zone around the computation point (P) are applied prior to downward continuation. The radius of the near-zone is shown not to exceed that of the height of any mountain around P, which, in the worst case (with P located near the top of Mt Everest) yields a radius of convergence within 9 km. In most cases the radius is much smaller. Hence, only a very local part of the terrain potential must be removed to allow the determination of the geoid height by Taylor expansion. Importantly, if the height of P is at least twice that of any point of the near-zone topography (e.g. for airborne and satellite gravity), the Taylor series always converges without any reduction for terrain.

Ort, förlag, år, upplaga, sidor
2009. Vol. 176, nr 1, s. 14-18
Nyckelord [en]
Satellite geodesy, Gravity anomalies and Earth structure, Geopotential, theory, continuation
Identifikatorer
URN: urn:nbn:se:kth:diva-18061DOI: 10.1111/j.1365-246X.2008.03851.xISI: 000261883400002Scopus ID: 2-s2.0-58149183839OAI: oai:DiVA.org:kth-18061DiVA, id: diva2:336107
Anmärkning
QC 20100525Tillgänglig från: 2010-08-05 Skapad: 2010-08-05 Senast uppdaterad: 2017-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Sjöberg, Lars Erik
Av organisationen
Geodesi
I samma tidskrift
Geophysical Journal International

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 89 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf