Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wave field decomposition in anisotropic fluids: A spectral theory approach
KTH, Tidigare Institutioner                               , Teoretisk elektroteknik.ORCID-id: 0000-0001-7269-5241
2001 (Engelska)Ingår i: Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications, ISSN 0167-8019, E-ISSN 1572-9036, Vol. 67, nr 2, s. 117-171Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An extension of directional wave field decomposition in acoustics from heterogenous isotropic media to generic heterogenous anisotropic media is established. We make a connection between the Dirichlet-to-Neumann map for a level plane, the solution to an algebraic Riccati operator equation, and a projector defined via a Dunford-Taylor type integral over the resolvent of a nonnormal, noncompact matrix operator with continuous spectrum. In the course of the analysis, the spectrum of the Laplace transformed acoustic system's matrix is analyzed and shown to separate into two nontrivial parts. The existence of a projector is established and using a generalized eigenvector procedure, we find the solution to the associated algebraic Riccati operator equation. The solution generates the decomposition of the wave field and is expressed in terms of the elements of a Dunford-Taylor type integral over the resolvent.

Ort, förlag, år, upplaga, sidor
2001. Vol. 67, nr 2, s. 117-171
Nyckelord [en]
directional wave field decomposition, wave splitting, spectral reduction, acoustic anisotropy, generalized eigenvalue problem, algebraic Riccati operator equation, Dirichlet-to-Neumann maps, generalized vertical wave number operators, generalized vertical slowness, generalized bremmer series, quadratic profile, scattering, equation, approximation, dimensions, helmholtz, media
Identifikatorer
URN: urn:nbn:se:kth:diva-20820ISI: 000170047100001OAI: oai:DiVA.org:kth-20820DiVA, id: diva2:339517
Anmärkning
QC 20100525Tillgänglig från: 2010-08-10 Skapad: 2010-08-10 Senast uppdaterad: 2017-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Jonsson, B. Lars G.

Sök vidare i DiVA

Av författaren/redaktören
Jonsson, B. Lars G.
Av organisationen
Teoretisk elektroteknik
I samma tidskrift
Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 81 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf