Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
2010 (Engelska)Ingår i: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 84, nr 7, s. 1103-1110Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 (Klein et al., 2004) and Engineering Equation Solver (EES) (Klein, 2004) using co-solving technique Both daily performance and yearly performance of the proposed system have been simulated Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions Besides the power being produced, the system can also produce about 10 times much thermal energy. which can be used for space heating, domestic hot water supply or driving absorption chillers The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system (C) 2010 Elsevier Ltd All rights reserved.

Ort, förlag, år, upplaga, sidor
2010. Vol. 84, nr 7, s. 1103-1110
Nyckelord [en]
Carbon dioxide, Solar, Efficiency, Transcritical cycle, Combined heat and power
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:kth:diva-27254DOI: 10.1016/j.solener.2010.03.006ISI: 000279126500003Scopus ID: 2-s2.0-77953134028OAI: oai:DiVA.org:kth-27254DiVA, id: diva2:381409
Anmärkning
QC 20101227Tillgänglig från: 2010-12-27 Skapad: 2010-12-09 Senast uppdaterad: 2017-12-11Bibliografiskt granskad
Ingår i avhandling
1. Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
Öppna denna publikation i ny flik eller fönster >>Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades).

Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozonedepleting potential (ODP) and low global warming potential (GWP). It is also inexpensive, non‐explosive, non‐flammable and abundant in nature. At the same time, CO2 has advantages in use as a working fluid in low‐grade heat resource recovery and energy conversion from waste heat, mainly because it can create a better matching to the heat source temperature profile in the supercritical region to reduce the irreversibility during the heating process. Nevertheless, the research in such applications is very limited.

This study investigates the potential of using carbon dioxide as a working fluid in power cycles for low‐grade heat source/waste heat recovery.

At the beginning of this study, basic CO2 power cycles, namely carbon dioxide transcritical power cycle, carbon dioxide Brayton cycle and carbon dioxide cooling and power combined cycle were simulated and studied to see their potential in different applications (e.g. low‐grade heat source applications, automobile applications and heat and power cogeneration applications). For the applications in automobile industries, low pressure drop on the engine’s exhaust gas side is crucial to not reducing the engine’s performance. Therefore, a heat exchanger with low‐pressure drop on the secondary side (i.e. the gas side) was also designed, simulated and tested with water and engine exhaust gases at the early stage of the study (Appendix 2).

The study subsequently focused mainly on carbon dioxide transcritical power cycle, which has a wide range of applications. The performance of the carbon dioxide transcritical power cycle has been simulated and compared with the other most commonly employed power cycles in lowgrade heat source utilizations, i.e. the Organic Rankin Cycle (ORC). Furthermore, the annual performance of the carbon dioxide transcritical power cycle in utilizing the low‐grade heat source (i.e. solar) has also been simulated and analyzed with dynamic simulation in this work.

Last but not least, the matching of the temperature profiles in the heat exchangers for CO2 and its influence on the cycle performance have also been discussed. Second law thermodynamic analyses of the carbon dioxide transcritical power systems have been completed.

The simulation models have been mainly developed in the software known as Engineering Equation Solver (EES)1 for both cycle analyses and computer‐aided heat exchanger designs. The model has also been connected to TRNSYS for dynamic system annual performance simulations. In addition, Refprop 7.02 is used for calculating the working fluid properties, and the CFD tool (COMSOL) 3 has been employed to investigate the particular phenomena influencing the heat exchanger performance.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology(KTH), 2011. s. xxii, 128
Serie
Trita-REFR, ISSN 1102-0245 ; 11:03
Nationell ämneskategori
Energiteknik
Identifikatorer
urn:nbn:se:kth:diva-50261 (URN)978-91-7501-187-5 (ISBN)
Disputation
2011-12-09, M2, Brinellvägen 64, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning
QC 20111205Tillgänglig från: 2011-12-05 Skapad: 2011-12-04 Senast uppdaterad: 2011-12-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Chen, YangLundqvist, Per
Av organisationen
Tillämpad termodynamik och kylteknik
I samma tidskrift
Solar Energy
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 239 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf