kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gaussian mixture modeling for source localization
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-6630-243X
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-2638-6047
2011 (Engelska)Ingår i: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2011, s. 2604-2607Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Exploiting prior knowledge, we use Bayesian estimation to localize a source heard by a fixed sensor network. The method has two main aspects: Firstly, the probability density function (PDF) of a function of the source location is approximated by a Gaussian mixture model (GMM). This approximation can theoretically be made arbitrarily accurate, and allows a closed form minimum mean square error (MMSE) estimator for that function. Secondly, the source location is retrieved by minimizing the Euclidean distance between the function and its MMSE estimate using a gradient method. Our method avoids the issues of a numerical MMSE estimator but shows comparable accuracy.

Ort, förlag, år, upplaga, sidor
2011. s. 2604-2607
Serie
IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings, ISSN 1520-6149
Nyckelord [en]
Bayesian estimations, Closed form, Euclidean distance, Gaussian Mixture Model, Gaussian mixture modeling, Localization, Minimum mean-square error estimators, Prior knowledge, Probability density function (pdf), Source localization, Source location, Bayesian networks, Communication channels (information theory), Estimation, Gaussian distribution, Gradient methods, Image segmentation, Knowledge based systems, Numerical methods, Object recognition, Sensor networks, Sensors, Signal processing, Speech communication
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:kth:diva-46325DOI: 10.1109/ICASSP.2011.5947018Scopus ID: 2-s2.0-80051607561ISBN: 978-1-4577-0538-0 (tryckt)ISBN: 978-1-4577-0537-3 (tryckt)OAI: oai:DiVA.org:kth-46325DiVA, id: diva2:453654
Konferens
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011; Prague; 22 May 2011 through 27 May 2011
Anmärkning
QC 20111115Tillgänglig från: 2011-11-03 Skapad: 2011-11-03 Senast uppdaterad: 2022-06-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Jaldén, JoakimChatterjee, Saikat

Sök vidare i DiVA

Av författaren/redaktören
Jaldén, JoakimChatterjee, Saikat
Av organisationen
SignalbehandlingACCESS Linnaeus Centre
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 141 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf