Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning grasp stability based on tactile data and HMMs
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2965-2953
Department of Information Technology, Lappeenranta University of Technology, Finland.
2010 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this paper, the problem of learning grasp stability in robotic object grasping based on tactile measurements is studied. Although grasp stability modeling and estimation has been studied for a long time, there are few robots today able of demonstrating extensive grasping skills. The main contribution of the work presented here is an investigation of probabilistic modeling for inferring grasp stability based on learning from examples. The main objective is classification of a grasp as stable or unstable before applying further actions on it, e.g. lifting. The problem cannot be solved by visual sensing which is typically used to execute an initial robot hand positioning with respect to the object. The output of the classification system can trigger a regrasping step if an unstable grasp is identified. An off-line learning process is implemented and used for reasoning about grasp stability for a three-fingered robotic hand using Hidden Markov models. To evaluate the proposed method, experiments are performed both in simulation and on a real robot system.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2010. s. 132-137
Nyckelord [en]
Grasping, Hidden Markov models, Stability analysis, Tactile sensors
Nationell ämneskategori
Datavetenskap (datalogi) Robotteknik och automation
Identifikatorer
URN: urn:nbn:se:kth:diva-46731DOI: 10.1109/ROMAN.2010.5598659ISI: 000300610200025Scopus ID: 2-s2.0-78649868536ISBN: 978-1-4244-7991-7 (tryckt)OAI: oai:DiVA.org:kth-46731DiVA, id: diva2:454093
Konferens
IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2010
Projekt
EU FP7 project CogX
Anmärkning

QC 20130605

Tillgänglig från: 2011-11-04 Skapad: 2011-11-04 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusIEEEXplore

Personposter BETA

Kragic, Danica

Sök vidare i DiVA

Av författaren/redaktören
Bekiroglu, YaseminKragic, Danica
Av organisationen
Datorseende och robotik, CVAPCentrum för Autonoma System, CAS
Datavetenskap (datalogi)Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 415 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf