Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
III-Vs on Si for photonic applications-A monolithic approach
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Halvledarmaterial, HMA.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Halvledarmaterial, HMA.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Halvledarmaterial, HMA.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Halvledarmaterial, HMA.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Materials Science & Engineering: B. Solid-state Materials for Advanced Technology, ISSN 0921-5107, E-ISSN 1873-4944, Vol. 177, nr 17, s. 1551-1557Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III-Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO2 through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO2 as the first step which paves the way for realizing active photonic devices on Si/SiO2 waveguides, e.g. an MECSL.

Ort, förlag, år, upplaga, sidor
Elsevier, 2012. Vol. 177, nr 17, s. 1551-1557
Nyckelord [en]
Heteroepitaxy, Semiconductor laser, Monolithic integration, Epitaxial lateral overgrowth, Evanescently coupled silicon laser, Silicon photonics
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
SRA - Informations- och kommunikationsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-88854DOI: 10.1016/j.mseb.2011.12.006ISI: 000309853000007Scopus ID: 2-s2.0-84866354328OAI: oai:DiVA.org:kth-88854DiVA, id: diva2:502512
Anmärkning

QC 20121116

Tillgänglig från: 2012-02-14 Skapad: 2012-02-14 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
Ingår i avhandling
1. High-quality InP on Si and concepts for monolithic photonic integration
Öppna denna publikation i ny flik eller fönster >>High-quality InP on Si and concepts for monolithic photonic integration
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

As the age of Moore’s law is drawing to a close, continuing increase in computing performance is becoming increasingly hard‐earned, while demand for bandwidth is insatiable. One way of dealing with this challenge is the integration of active photonic material with Si, allowing high‐speed optical inter‐ and intra‐chip connects on one hand, and the economies of scale of the CMOS industry in optical communications on the other. One of the most essential active photonic materials is InP, stemming from its capability in combination with its related materials to produce lasers, emitting at wavelengths of 1300 and 1550 nm, the two most important wavelengths in data‐ and telecom.

However, integrating InP with Si remains a challenging subject. Defects arise due to differences in lattice constants, differences in thermal expansion coefficients, polarity and island‐like growth behavior. Approaches to counter these problems include epitaxial lateral overgrowth (ELOG), which involves growing InP laterally from openings in a mask deposited on a defective InP/Si substrate. This approach solves some of these problems by filtering out the previously mentioned defects. However, filtering may not be complete and the ELOG and mask themselves may introduce new sources for formation of defects such as dislocations and stacking faults.

In this work, the various kinds of defects present in InP ELOG layers grown by hydride vapor phase epitaxy on Si, and the reason for their presence, as well as strategies for counteracting them, are investigated. The findings reveal that whereas dislocations appear in coalesced ELOG layers both on InP and InP/Si, albeit to varying extents, uncoalesced ELOG layers on both substrate types are completely free of threading dislocations. Thus, coalescence is a critical aspect in the formation of dislocations. It is shown that a rough surface of the InP/Si substrate is detrimental to defect‐free coalescence. Chemical‐mechanical polishing of this surface improves the coalescence in subsequent ELOG leading to fewer defects.

Furthermore, ELOG on InP substrate is consistently free of stacking faults. This is not the case for ELOG on InP/Si, where stacking faults are to some extent propagating from the defective substrate, and are possibly also forming during ELOG. A model describing the conditions for their propagation is devised; it shows that under certain conditions, a mask height to opening width aspect ratio of 3.9 should result in their complete blocking. As to the potential formation of new stacking faults, the formation mechanism is not entirely clear, but neither coalescence nor random deposition errors on low energy facets are the main reasons for their formation. It is hypothesized that the stacking faults can be removed by thermal annealing of the seed and ELOG layers.

Furthermore, concepts for integrating an active photonic device with passive Si components are elucidated by combining Si/SiO2 waveguides used as the mask in ELOG and multi‐quantum well (MQW) lasers grown on ELOG InP. Such a device is found to have favorable thermal dissipation, which is an added advantage in an integrated photonic CMOS device.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. 85
Serie
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2013:05
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:kth:diva-127837 (URN)
Disputation
2013-09-27, Sal/Hall E, Forum, KTH-ITC, Isafjordsgatan 39, Kista, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20130909

Tillgänglig från: 2013-09-09 Skapad: 2013-09-09 Senast uppdaterad: 2013-09-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wosinski, LechLourdudoss, Sebastian

Sök vidare i DiVA

Av författaren/redaktören
Wang, ZhechaoJunesand, CarlMetaferia, WondwosenHu, ChenWosinski, LechLourdudoss, Sebastian
Av organisationen
Halvledarmaterial, HMAFotonik (Stängd 20120101)
I samma tidskrift
Materials Science & Engineering: B. Solid-state Materials for Advanced Technology
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 254 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf