Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cellulose nanofibers decorated with magnetic nanoparticles: synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. (WWSC)
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.ORCID-id: 0000-0002-0236-5420
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Teknisk materialfysik.ORCID-id: 0000-0003-2170-0076
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, Vol. 1, nr 47, s. 7963-7972Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Magnetic nanoparticles are the functional component for magnetic membranes, but they are difficult to disperse and process into tough membranes. Here, cellulose nanofibers are decorated with magnetic ferrite nanoparticles formed in situ which ensures a uniform particle distribution, thereby avoiding the traditional mixing stage with the potential risk of particle agglomeration. The attachment of the particles to the nanofibrils is achieved via aqueous in situ hydrolysis of metal precursors onto the fibrils at temperatures below 100 °C. Metal adsorption and precursor quantification were carried out using Induction Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). FE-SEM was used for high resolution characterization of the decorated nanofibers and hybrid membranes, and TEM was used for nanoparticle size distribution studies. The decorated nanofibers form a hydrocolloid. Large (200 mm diameter) hybrid cellulose/ferrite membranes were prepared by simple filtration and drying of the colloidal suspension. The low-density, flexible and permanently magnetized membranes contain as much as 60 wt% uniformly dispersed nanoparticles (thermogravimetric analysis data). Hysteresis magnetization was measured by a Vibrating Sample Magnetometer; the inorganic phase was characterized by XRD. Membrane mechanical properties were measured in uniaxial tension. An ultrathin prototype loudspeaker was made and its acoustic performance in terms of output sound pressure was characterized. A full spectrum of audible frequencies was resolved.

Ort, förlag, år, upplaga, sidor
2013. Vol. 1, nr 47, s. 7963-7972
Nyckelord [en]
Nanocomposite, Magnetic nanoparticle, Cellulose nanofiber, Mechanical properties, Acoustic
Nationell ämneskategori
Pappers-, massa- och fiberteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-133562DOI: 10.1039/C3TC31748JISI: 000327259700024Scopus ID: 2-s2.0-84887944251OAI: oai:DiVA.org:kth-133562DiVA, id: diva2:662123
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse
Anmärkning

QC 20131220

Tillgänglig från: 2013-11-06 Skapad: 2013-11-06 Senast uppdaterad: 2013-12-20Bibliografiskt granskad
Ingår i avhandling
1. Compression-moulded and multifunctional cellulose network materials
Öppna denna publikation i ny flik eller fönster >>Compression-moulded and multifunctional cellulose network materials
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Cellulose-based materials are widely used in a number of important applications (e.g. paper, wood, textiles). Additional developments are suggested by the growing interest for natural fibre-based composite and nanocomposite materials. The motivation is not only in the economic and ecological benefits, but is also related to advantageous properties and characteristics. The objective of this thesis is to provide a better understanding of process-structure-property relationships in some novel cellulose network materials with advanced functionalities, and showing potential large-scale processability. An important result is the favourable combination of mechanical properties observed for network-based cellulose materials.

Compression-moulding of cellulose pulp fibres under high pressure (45 MPa) and elevated temperature (120 – 180 oC) provides an environmentally friendly process for preparation of stiff and strong cellulose composite plates. The structure of these materials is characterized at multiple scales (molecular, supra-molecular and microscale). These observations are related to measured reduction in water retention ability and improvement in mechanical properties.

In a second part, cellulose nanofibrils (NFC) are functionalized with in-situ precipitated magnetic nanoparticles and formed into dense nanocomposite materials with high inorganic content. The precipitation conditions influence particle size distributions, which in turn affect the magnetic properties of the material. Besides, the decorated NFC network provides high stiffness, strength and toughness to materials with very high nanoparticle loading (up to 50 vol.%).

Subsequently, a method for impregnation of wet NFC network templates with a thermosetting epoxy resin is developed, enabling the preparation of well-dispersed epoxy-NFC nanocomposites with high ductility and moisture durable mechanical properties. Furthermore, cellulose fibrils interact positively with the epoxy during curing (covalent bond formation and accelerated curing). Potential large scale development of epoxy-NFC and magnetic nanocomposites is further demonstrated with the manufacturing of 3D shaped compression-moulded objects.

Finally, the wet impregnation route developed for epoxy is adapted to prepare UV-curable NFC nanocomposite films with a hyperbranched polymer matrix. Different chemical modifications are applied to the NFC in order to obtain moisture durable oxygen barrier properties.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. 80
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2013:45
Nyckelord
compression-moulding, cellulose fibre, nanocomposite, magnetic nanoparticle, epoxy, UV curing, oxygen barrier
Nationell ämneskategori
Pappers-, massa- och fiberteknik
Identifikatorer
urn:nbn:se:kth:diva-133564 (URN)978-91-7501-911-6 (ISBN)
Disputation
2013-11-29, K1, Teknikringen 56, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20131111

Tillgänglig från: 2013-11-11 Skapad: 2013-11-06 Senast uppdaterad: 2013-11-11Bibliografiskt granskad

Open Access i DiVA

Magnetic cellulose nanofibers(2497 kB)523 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2497 kBChecksumma SHA-512
f63d4d308ca98ca9a884c0d17690ca8f0215652338d54a9f2a498a779dbead7834f42b3bfa6705e154d285c3cebd9d9b0391dbfefd4d8d1844dfd7ef45868963
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopusJournal of Materials Chemistry C

Personposter BETA

Andersson, RichardStröm, ValterBerglund, Lars

Sök vidare i DiVA

Av författaren/redaktören
Galland, SylvainAndersson, RichardSalajkova, MichaelaStröm, ValterOlsson, RichardBerglund, Lars
Av organisationen
BiokompositerWallenberg Wood Science CenterPolymera materialTeknisk materialfysik
Pappers-, massa- och fiberteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 523 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 873 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf