Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling Perception of Speed in Music Audio
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Musikakustik.ORCID-id: 0000-0002-4957-2128
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Musikakustik.ORCID-id: 0000-0003-2926-6518
2013 (Engelska)Ingår i: Proceedings of the Sound and Music Computing Conference 2013, 2013, s. 735-741Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One of the major parameters in music is the overall speed of a musical performance. Speed is often associated with tempo, but other factors such as note density (onsets per second) seem to be important as well. In this study, a computational model of speed in music audio has been developed using a custom set of rhythmic features. The original audio is first separated into a harmonic part and a percussive part and onsets are extracted separately from the different layers. The characteristics of each onset are determined based on frequency content as well as perceptual salience using a clustering approach. Using these separated onsets a set of eight features including a tempo estimation are defined which are specifically designed for modelling perceived speed. In a previous study 20 listeners rated the speed of 100 ringtones consisting mainly of popular songs, which had been converted from MIDI to audio. The ratings were used in linear regression and PLS regression in order to evaluate the validity of the model as well as to find appropriate features. The computed audio features were able to explain about 90 % of the variability in listener ratings.

Ort, förlag, år, upplaga, sidor
2013. s. 735-741
Nationell ämneskategori
Datavetenskap (datalogi) Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:kth:diva-137404ISBN: 9789175018317 (tryckt)OAI: oai:DiVA.org:kth-137404DiVA, id: diva2:678904
Konferens
SMC Sound and Music Computing Conference 2013; Stockholm, Sweden, 30 July-3 August, 2013
Anmärkning

tmh_import_13_12_13, tmh_id_3878

QC 20140213

Tillgänglig från: 2013-12-13 Skapad: 2013-12-13 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Proceedings at Sound and Music Computing

Personposter BETA

Friberg, Anders

Sök vidare i DiVA

Av författaren/redaktören
Elowsson, AndersFriberg, Anders
Av organisationen
Musikakustik
Datavetenskap (datalogi)Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 143 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf