kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive Distribution of the Dirichlet Mixture Model by Local Variational Inference
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsteori.ORCID-id: 0000-0001-7957-5103
2014 (Engelska)Ingår i: Journal of Signal Processing Systems, ISSN 1939-8018, E-ISSN 1939-8115, Vol. 74, nr 3, s. 359-374Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In Bayesian analysis of a statistical model, the predictive distribution is obtained by marginalizing over the parameters with their posterior distributions. Compared to the frequently used point estimate plug-in method, the predictive distribution leads to a more reliable result in calculating the predictive likelihood of the new upcoming data, especially when the amount of training data is small. The Bayesian estimation of a Dirichlet mixture model (DMM) is, in general, not analytically tractable. In our previous work, we have proposed a global variational inference-based method for approximately calculating the posterior distributions of the parameters in the DMM analytically. In this paper, we extend our previous study for the DMM and propose an algorithm to calculate the predictive distribution of the DMM with the local variational inference (LVI) method. The true predictive distribution of the DMM is analytically intractable. By considering the concave property of the multivariate inverse beta function, we introduce an upper-bound to the true predictive distribution. As the global minimum of this upper-bound exists, the problem is reduced to seek an approximation to the true predictive distribution. The approximated predictive distribution obtained by minimizing the upper-bound is analytically tractable, facilitating the computation of the predictive likelihood. With synthesized data and real data evaluations, the good performance of the proposed LVI based method is demonstrated by comparing with some conventionally used methods.

Ort, förlag, år, upplaga, sidor
2014. Vol. 74, nr 3, s. 359-374
Nyckelord [en]
Predictive distribution, Dirichlet mixture model, Bayesian inference, Local variational inference
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:kth:diva-144557DOI: 10.1007/s11265-013-0769-8ISI: 000333206500007Scopus ID: 2-s2.0-84897460170OAI: oai:DiVA.org:kth-144557DiVA, id: diva2:714136
Anmärkning

QC 20140425

Tillgänglig från: 2014-04-25 Skapad: 2014-04-24 Senast uppdaterad: 2024-03-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Leijon, Arne

Sök vidare i DiVA

Av författaren/redaktören
Leijon, Arne
Av organisationen
Kommunikationsteori
I samma tidskrift
Journal of Signal Processing Systems
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf